A Neuromorphic Computing Platform with Compact Neuromorphic Core

P. Zhou, Shaogang Hu
{"title":"A Neuromorphic Computing Platform with Compact Neuromorphic Core","authors":"P. Zhou, Shaogang Hu","doi":"10.1109/ICCS52645.2021.9697293","DOIUrl":null,"url":null,"abstract":"With the rapid development of brain-like computing, large-scale neural computing platforms have received much attention. In order to reduce hardware overhead and build a large-scale neural computing platform, this work proposes a compact neuromorphic core model. Through the use of neuron multiplexing technology and weight clustering algorithm, we built a compact and versatile neuromorphic computing core that integrates 1K neurons and 1M synapses through 588 LUTs. Based on the core design, we propose a large-scale neuromorphic system. This neuromorphic computing platform integrates 64 neuromorphic cores and related control components. We successfully deployed this platform on Xilinx’s FPGA-Vertex-6 platform. We successfully deployed a three-layered spiking neural network (SNN) for image recognition and achieved 98.41% recognition accuracy through this platform.","PeriodicalId":163200,"journal":{"name":"2021 IEEE 3rd International Conference on Circuits and Systems (ICCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd International Conference on Circuits and Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS52645.2021.9697293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of brain-like computing, large-scale neural computing platforms have received much attention. In order to reduce hardware overhead and build a large-scale neural computing platform, this work proposes a compact neuromorphic core model. Through the use of neuron multiplexing technology and weight clustering algorithm, we built a compact and versatile neuromorphic computing core that integrates 1K neurons and 1M synapses through 588 LUTs. Based on the core design, we propose a large-scale neuromorphic system. This neuromorphic computing platform integrates 64 neuromorphic cores and related control components. We successfully deployed this platform on Xilinx’s FPGA-Vertex-6 platform. We successfully deployed a three-layered spiking neural network (SNN) for image recognition and achieved 98.41% recognition accuracy through this platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有紧凑型神经形态核心的神经形态计算平台
随着类脑计算的迅速发展,大规模的神经计算平台受到了广泛的关注。为了减少硬件开销和构建大规模的神经计算平台,本文提出了一种紧凑的神经形态核心模型。通过使用神经元复用技术和权重聚类算法,我们构建了一个紧凑、通用的神经形态计算核心,通过588个lut集成了1K个神经元和1M个突触。基于核心设计,我们提出了一个大规模的神经形态系统。该神经形态计算平台集成了64个神经形态核心和相关控制组件。我们成功地将该平台部署在Xilinx的FPGA-Vertex-6平台上。我们成功部署了一种用于图像识别的三层峰值神经网络(SNN),并通过该平台实现了98.41%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Heating Simulator for Satellite Active Thermal Control System Defending against Thermal Covert Channel Attacks by Task Migration in Many-core System A 21.2-23-GHz Ultra-Low-Power Injection-Locked Frequency Tripler Using Current-Reuse Structure Structure Design and Characteristics of Sense-Switch pFlash Devices Studies on the Phase Characteristic of S-band RKA: Reducing RF Phase Jitter by Reducing Intense Pulse Fluctuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1