Social virtual energy networks: Exploring innovative business models of prosumer aggregation with virtual power plants

M. Wainstein, R. Dargaville, A. Bumpus
{"title":"Social virtual energy networks: Exploring innovative business models of prosumer aggregation with virtual power plants","authors":"M. Wainstein, R. Dargaville, A. Bumpus","doi":"10.1109/ISGT.2017.8086022","DOIUrl":null,"url":null,"abstract":"Virtual Power Plant (VPP) have been proposed as an effective way to aggregate large portfolios of Distributed Energy Resources (DERs) and coordinate them to behave as a single functional unit in both the network and the market. This research narrative proposes that business models that can combine Internet platforms such as Peer-to-peer networks, with VPP to collectively manage DERs, are ideal systems for socially innovative business models to accomplish scale and replication and drive systemic change in the power system. This project lays conceptual foundations to design and simulate such a system. An urban social electricity-trading network is presented using the City of Melbourne as case study. Modelling is performed by applying an optimisation framework to a portfolio of household datasets with solar, simulated storage and flexible demand capabilities; a local community windfarm and large business buildings. Initial simulations show that internal energy trading between members of such a social energy network is highly dependent on local market conditions. However, having the ability to simultaneously operate as a small-scale generator, retailer and demand response coordinator might be the factors allowing these alternative business models to be feasible under various conditions.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Virtual Power Plant (VPP) have been proposed as an effective way to aggregate large portfolios of Distributed Energy Resources (DERs) and coordinate them to behave as a single functional unit in both the network and the market. This research narrative proposes that business models that can combine Internet platforms such as Peer-to-peer networks, with VPP to collectively manage DERs, are ideal systems for socially innovative business models to accomplish scale and replication and drive systemic change in the power system. This project lays conceptual foundations to design and simulate such a system. An urban social electricity-trading network is presented using the City of Melbourne as case study. Modelling is performed by applying an optimisation framework to a portfolio of household datasets with solar, simulated storage and flexible demand capabilities; a local community windfarm and large business buildings. Initial simulations show that internal energy trading between members of such a social energy network is highly dependent on local market conditions. However, having the ability to simultaneously operate as a small-scale generator, retailer and demand response coordinator might be the factors allowing these alternative business models to be feasible under various conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会虚拟能源网络:利用虚拟电厂探索产消聚合的创新商业模式
虚拟电厂(VPP)作为一种将大型分布式能源组合聚集起来并协调它们在网络和市场中作为一个单一功能单元运行的有效方法而被提出。本研究提出,结合互联网平台(如点对点网络)和VPP共同管理der的商业模式,是社会创新商业模式实现规模和复制并推动电力系统系统性变革的理想系统。本课题为该系统的设计和仿真奠定了概念基础。以墨尔本市为例,提出了一个城市社会电力交易网络。建模是通过将优化框架应用于具有太阳能、模拟存储和灵活需求能力的家庭数据集组合来执行的;当地社区的风电场和大型商业大楼。初步模拟表明,这种社会能源网络成员之间的内部能源交易高度依赖于当地市场条件。然而,拥有同时作为小型发电机、零售商和需求响应协调器运行的能力可能是允许这些替代商业模式在各种条件下可行的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cyber-physical resilience metric for smart grids Optimal allocation of photovoltaic systems and energy storage systems considering constraints of both transmission and distribution systems Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model Towards the improvement of multi-objective evolutionary algorithms for service restoration Multi-level control framework for enhanced flexibility of active distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1