System Identification for Multi-Channel Listening-Room Compensation Using an Acoustic Echo Canceller

Stefan Goetze, M. Kallinger, A. Mertins, K. Kammeyer
{"title":"System Identification for Multi-Channel Listening-Room Compensation Using an Acoustic Echo Canceller","authors":"Stefan Goetze, M. Kallinger, A. Mertins, K. Kammeyer","doi":"10.1109/HSCMA.2008.4538727","DOIUrl":null,"url":null,"abstract":"Modern hands-free telecommunication devices jointly apply several subsystems, e.g. for noise reduction (NR), acoustic echo cancellation (AEC) and listening-room compensation (LRC). In this contribution the combination of an equalizer for listening room compensation and an acoustic echo canceller is analyzed. Inverse filtering of room impulse responses (RIRs) is a challenging task since they are, in general, mixed phase systems having hundreds of zeros inside and outside near the unit circle in the z-domain. Furthermore, a reliable estimate of the RIR which shall be inverted is important. Since RIRs are time-variant due to possible changes of the acoustic environment, they have to be identified adaptively. If an AEC (or any other adaptive method) is used to identify the time variant room impulse responses the estimate's distance to the real RIRs may be too high for a satisfying equalization, especially in periods of initial convergence of the AEC or after RIR changes. Therefore, we propose to estimate the convergence state of the AEC and to incorporate this knowledge into the equalizer design.","PeriodicalId":129827,"journal":{"name":"2008 Hands-Free Speech Communication and Microphone Arrays","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Hands-Free Speech Communication and Microphone Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSCMA.2008.4538727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Modern hands-free telecommunication devices jointly apply several subsystems, e.g. for noise reduction (NR), acoustic echo cancellation (AEC) and listening-room compensation (LRC). In this contribution the combination of an equalizer for listening room compensation and an acoustic echo canceller is analyzed. Inverse filtering of room impulse responses (RIRs) is a challenging task since they are, in general, mixed phase systems having hundreds of zeros inside and outside near the unit circle in the z-domain. Furthermore, a reliable estimate of the RIR which shall be inverted is important. Since RIRs are time-variant due to possible changes of the acoustic environment, they have to be identified adaptively. If an AEC (or any other adaptive method) is used to identify the time variant room impulse responses the estimate's distance to the real RIRs may be too high for a satisfying equalization, especially in periods of initial convergence of the AEC or after RIR changes. Therefore, we propose to estimate the convergence state of the AEC and to incorporate this knowledge into the equalizer design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于回声消除器的多通道听音室补偿系统辨识
现代免提通信设备联合应用了几个子系统,例如降噪(NR)、回声消除(AEC)和听室补偿(LRC)。在这篇文章中,分析了用于听音室补偿的均衡器和声学回声消除器的组合。房间脉冲响应(RIRs)的反滤波是一项具有挑战性的任务,因为它们通常是混合相位系统,在z域的单位圆附近有数百个内外零。此外,可靠的RIR估计是重要的,该估计将被反转。由于声环境可能发生变化,rir具有时变特性,因此需要对其进行自适应识别。如果使用AEC(或任何其他自适应方法)来识别时变房间脉冲响应,则估计到实际RIR的距离可能过高,无法实现令人满意的均衡,特别是在AEC的初始收敛期或RIR变化后。因此,我们建议估计AEC的收敛状态,并将这些知识纳入均衡器设计中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical Arrays Near Boundaries HMM-Based Mask Estimation for a Speech Recognition Front-End Using Computational Auditory Scene Analysis Single Channel Enhancement for Speech Recognition Binaural and Multiple-Microphone Signal Processing Motivated by Auditory Perception Robust Auto-Focusing Wideband Bayesian Beamforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1