Linear programming with nonparametric penalty programs and iterated thresholding

Jeffery Kline, Glenn M. Fung
{"title":"Linear programming with nonparametric penalty programs and iterated thresholding","authors":"Jeffery Kline, Glenn M. Fung","doi":"10.1080/10556788.2022.2117356","DOIUrl":null,"url":null,"abstract":"It is known [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1–18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2117356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1–18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数惩罚规划与迭代阈值的线性规划
[A Newton method for linear programming, J. Optim]。理论应用,121 (2004),pp. 1-18],每个线性规划都可以通过最小化无约束二次惩罚规划来精确求解。惩罚规划用标量t>0参数化,当选择t大于一个有限但未知的值时,可以用这种方法求解原线性规划。本文证明了每一个线性规划都可以用无参数惩罚规划的解来求解。我们还利用非膨胀映射的不动点对二次惩罚规划的解进行了刻画。这导致迭代阈值算法收敛到期望的极限点。数值实验表明,这种迭代方法优于各种标准的二次规划求解方法。最后,我们证明了对于每一个,通过求解参数化惩罚规划得到的解都保证在原线性规划的可行集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximizing the number of rides served for time-limited Dial-a-Ride* A family of limited memory three term conjugate gradient methods A semismooth conjugate gradients method – theoretical analysis A mixed-integer programming formulation for optimizing the double row layout problem Robust reverse 1-center problems on trees with interval costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1