Fusion of hyperspectral and LiDAR data using random feature selection and morphological attribute profiles

Sathishkumar Samiappan, Lalitha Dabbiru, R. Moorhead
{"title":"Fusion of hyperspectral and LiDAR data using random feature selection and morphological attribute profiles","authors":"Sathishkumar Samiappan, Lalitha Dabbiru, R. Moorhead","doi":"10.1109/WHISPERS.2016.8071662","DOIUrl":null,"url":null,"abstract":"Hyperspectral imagery provides detailed information about land-cover materials over a wide spectral range. Land-cover classification using hyperspectral data has been an active topic of research. Elevation data from light detection and ranging (LiDAR) can aid the classification process in discriminating complex classes. Fusion of hyperspectral and LiDAR data has been investigated in the past where the goal was to extract features from both sources and combine them to improve the accuracy of land-cover classification. In this paper, we present a new fusion approach based on random feature selection (RFS) and morphological attribute profiles (AP). Our experimental study, conducted on a hyperspectral image and digital surface model (DSM) derived from first return LiDAR data collected over the Samford ecological research facility, Queensland, Australia indicate that the proposed approach yields excellent classification results.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Hyperspectral imagery provides detailed information about land-cover materials over a wide spectral range. Land-cover classification using hyperspectral data has been an active topic of research. Elevation data from light detection and ranging (LiDAR) can aid the classification process in discriminating complex classes. Fusion of hyperspectral and LiDAR data has been investigated in the past where the goal was to extract features from both sources and combine them to improve the accuracy of land-cover classification. In this paper, we present a new fusion approach based on random feature selection (RFS) and morphological attribute profiles (AP). Our experimental study, conducted on a hyperspectral image and digital surface model (DSM) derived from first return LiDAR data collected over the Samford ecological research facility, Queensland, Australia indicate that the proposed approach yields excellent classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机特征选择和形态属性的高光谱和激光雷达数据融合
高光谱图像提供了宽光谱范围内土地覆盖物质的详细信息。利用高光谱数据进行土地覆盖分类一直是一个活跃的研究课题。来自光探测和测距(LiDAR)的高程数据可以帮助分类过程区分复杂的类别。过去已经研究了高光谱和激光雷达数据的融合,其目标是从两个来源中提取特征并将它们结合起来以提高土地覆盖分类的准确性。本文提出了一种基于随机特征选择(RFS)和形态属性轮廓(AP)的融合方法。我们在澳大利亚昆士兰州桑福德生态研究设施收集的首次返回LiDAR数据的高光谱图像和数字表面模型(DSM)上进行的实验研究表明,所提出的方法产生了出色的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1