Scalability and Precision Improvement of Neural Program Synthesis

Yating Zhang
{"title":"Scalability and Precision Improvement of Neural Program Synthesis","authors":"Yating Zhang","doi":"10.1145/3324884.3418912","DOIUrl":null,"url":null,"abstract":"Mosts of the neural synthesis construct encoder-decoder models to learn a probability distribution over the space of programs. Two drawbacks in such neural program synthesis are that the synthesis scale is relatively small and the correctness of the synthesis result cannot be guaranteed. We address these problems by constructing a framework, which analyzes and solves problems from three dimensions: program space description, model architecture, and result processing. Experiments show that the scalability and precision of synthesis are improved in every dimension.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mosts of the neural synthesis construct encoder-decoder models to learn a probability distribution over the space of programs. Two drawbacks in such neural program synthesis are that the synthesis scale is relatively small and the correctness of the synthesis result cannot be guaranteed. We address these problems by constructing a framework, which analyzes and solves problems from three dimensions: program space description, model architecture, and result processing. Experiments show that the scalability and precision of synthesis are improved in every dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经程序合成的可扩展性和精度提高
大多数神经综合构建编码器-解码器模型来学习程序空间上的概率分布。这种神经程序合成的两个缺点是合成规模较小,不能保证合成结果的正确性。我们通过构建一个框架来解决这些问题,该框架从三个维度分析和解决问题:程序空间描述、模型体系结构和结果处理。实验表明,该方法在各个维度上都提高了合成的可扩展性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1