Polyhedral convex feasible regions in stochastic programming with recourse

Paul Olsen
{"title":"Polyhedral convex feasible regions in stochastic programming with recourse","authors":"Paul Olsen","doi":"10.1109/CDC.1975.270573","DOIUrl":null,"url":null,"abstract":"Multistage stochastic programming with recourse is formulated in terms of a recursive sequence of mathematical programming problems--P0,..., PK--with stochastic data. A polyhedral property of their feasible regions is used to derive a Lipschitz property of their objective functions. A slightly stronger property is used to conclude that any measurable decision rule satisfying the explicit and Implicit constraints of Pk(0 ¿ k ¿ K) almost surely can be redefined on a set of measure 0 so it satisfies the constraints for every possible realization of the random variables. Sufficient conditions for each of the two polyhedral convexity properties are given.","PeriodicalId":164707,"journal":{"name":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1975.270573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multistage stochastic programming with recourse is formulated in terms of a recursive sequence of mathematical programming problems--P0,..., PK--with stochastic data. A polyhedral property of their feasible regions is used to derive a Lipschitz property of their objective functions. A slightly stronger property is used to conclude that any measurable decision rule satisfying the explicit and Implicit constraints of Pk(0 ¿ k ¿ K) almost surely can be redefined on a set of measure 0 so it satisfies the constraints for every possible realization of the random variables. Sufficient conditions for each of the two polyhedral convexity properties are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带追索权随机规划中的多面体凸可行域
带追索权的多阶段随机规划是用数学规划问题的递归序列——P0,…PK——随机数据。利用它们可行域的多面体性质,导出了它们的目标函数的Lipschitz性质。一个稍微强一点的性质被用来得出结论:任何满足Pk(0¿k¿k)的显式和隐式约束的可测量决策规则几乎肯定可以在测度0的集合上重新定义,因此它满足随机变量的每一个可能实现的约束。给出了这两种多面体凸性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive analysis of digital images: A systems design overview Automation possibilities in air traffic control Parameter estimation using pseudo-random binary signals Man and machine, a matching problem On solution, stability, and transformation of linear time-varying systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1