Semi-analytical 3-D magnetic charge model for force calculation of a Transverse Flux Machine

M. Kremers, D. V. Casteren, J. Paulides, E. Lomonova
{"title":"Semi-analytical 3-D magnetic charge model for force calculation of a Transverse Flux Machine","authors":"M. Kremers, D. V. Casteren, J. Paulides, E. Lomonova","doi":"10.1109/EVER.2015.7112917","DOIUrl":null,"url":null,"abstract":"Modeling the 3-D flux patterns within Transverse Flux Machines (TFM) is one of the main challenges during their design. The analysis and design are often based on 3-D Finite Element Methods (FEM). Analytical models of TFMs are mostly limited to Magnetic Equivalent Circuits (MEC). This paper uses an analytical magnetic charge model to calculate the 3-D flux density in the air gap. An iterative approach allows for the modeling of flux focussing, resulting in a semi-analytical solution. Including flux focussing in the magnetic charge model results in a highly accurate prediction of the magnetic flux density in the air gap with less than 10% error. Furthermore, the cogging and attraction force of the machine are calculated for four topologies.","PeriodicalId":169529,"journal":{"name":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2015.7112917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Modeling the 3-D flux patterns within Transverse Flux Machines (TFM) is one of the main challenges during their design. The analysis and design are often based on 3-D Finite Element Methods (FEM). Analytical models of TFMs are mostly limited to Magnetic Equivalent Circuits (MEC). This paper uses an analytical magnetic charge model to calculate the 3-D flux density in the air gap. An iterative approach allows for the modeling of flux focussing, resulting in a semi-analytical solution. Including flux focussing in the magnetic charge model results in a highly accurate prediction of the magnetic flux density in the air gap with less than 10% error. Furthermore, the cogging and attraction force of the machine are calculated for four topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向磁通机力计算的半解析三维磁荷模型
横向磁通机(TFM)的三维磁通模式建模是其设计中的主要挑战之一。分析和设计通常基于三维有限元方法(FEM)。tfm的分析模型大多局限于磁等效电路(MEC)。本文采用解析磁荷模型计算了气隙内的三维磁通密度。迭代方法允许对通量聚焦进行建模,从而得到半解析解。在磁荷模型中加入磁通聚焦,可以高精度地预测气隙内的磁通密度,误差小于10%。此外,还计算了四种拓扑结构下机床的齿槽和吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon carbide power electronics for electric vehicles Condition monitoring of BLDC motor drive systems by Hilbert Huang Transform Switched Reluctance Machine Drives for electrical vehicle propulsion - optimal control with regard to the losses in machine and converter A novel double-rotor switched reluctance motor with auxiliary excitation windings Properties and control of variable speed doubly fed induction generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1