End-to-end system for printed Amazigh script recognition in document images

N. Aharrane, A. Dahmouni, K. E. Moutaouakil, K. Satori
{"title":"End-to-end system for printed Amazigh script recognition in document images","authors":"N. Aharrane, A. Dahmouni, K. E. Moutaouakil, K. Satori","doi":"10.1109/ATSIP.2017.8075520","DOIUrl":null,"url":null,"abstract":"In this work, we present an end-to-end system devoted to automatic recognition of printed Amazigh script in complex document images containing different languages such as Web images and natural scene images. To this end, text extraction from images is performed; the extracted text serves as input for a trained convolutional neural network (CNN) to identify its language. Finally, we proceed to the recognition of the Amazigh text script using a developed optical character recognition (OCR) system. The CNN reaches 99,12% of accuracy while the OCR system gets 99,93%. The obtained results seem to be very satisfactory.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we present an end-to-end system devoted to automatic recognition of printed Amazigh script in complex document images containing different languages such as Web images and natural scene images. To this end, text extraction from images is performed; the extracted text serves as input for a trained convolutional neural network (CNN) to identify its language. Finally, we proceed to the recognition of the Amazigh text script using a developed optical character recognition (OCR) system. The CNN reaches 99,12% of accuracy while the OCR system gets 99,93%. The obtained results seem to be very satisfactory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端系统打印Amazigh脚本识别在文档图像
在这项工作中,我们提出了一个端到端系统,致力于在包含不同语言的复杂文档图像(如Web图像和自然场景图像)中自动识别印刷Amazigh脚本。为此,从图像中提取文本;提取的文本作为训练有素的卷积神经网络(CNN)的输入,以识别其语言。最后,我们使用开发的光学字符识别(OCR)系统进行Amazigh文本脚本的识别。CNN达到了99.12%的准确率,而OCR系统达到了99.93%。所得的结果似乎很令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1