Generator Set Load Balancing Control Using the Knapsack Algorithm

Zhiguo He, Jing Huang, Ruping Lin, Xiaosheng Huang, Binyi Chen, Yang Lin
{"title":"Generator Set Load Balancing Control Using the Knapsack Algorithm","authors":"Zhiguo He, Jing Huang, Ruping Lin, Xiaosheng Huang, Binyi Chen, Yang Lin","doi":"10.1109/CAC57257.2022.10056076","DOIUrl":null,"url":null,"abstract":"The factory test and maintenance of the generator set are essential for ensuring that the generator runs smoothly. A generator test is frequently required to determine the generator set's rated capacity. A range of test loads must be varied to fulfil the test criteria during the test. Traditional load switching systems are inefficient, simple to misuse, and use load resources imbalanced. Because of these issues, this study provides a solution for load matching and balancing control of generator unit tests based on the knapsack algorithm. Combining the knapsack problem model with multiple combinatorial optimization algorithms allows for simulated comparison and analysis. In the actual test, the optimal control technique obtained is compared to the traditional approach. The results reveal that the knapsack algorithm, which is based on a combination of the knapsack problem model and the discrete binary particle swarm algorithm, can more accurately match and apply the test load, successfully overcoming the old technique's issues causes. Simultaneously, test efficiency is enhanced, and the whole test load's service life is extended.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10056076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The factory test and maintenance of the generator set are essential for ensuring that the generator runs smoothly. A generator test is frequently required to determine the generator set's rated capacity. A range of test loads must be varied to fulfil the test criteria during the test. Traditional load switching systems are inefficient, simple to misuse, and use load resources imbalanced. Because of these issues, this study provides a solution for load matching and balancing control of generator unit tests based on the knapsack algorithm. Combining the knapsack problem model with multiple combinatorial optimization algorithms allows for simulated comparison and analysis. In the actual test, the optimal control technique obtained is compared to the traditional approach. The results reveal that the knapsack algorithm, which is based on a combination of the knapsack problem model and the discrete binary particle swarm algorithm, can more accurately match and apply the test load, successfully overcoming the old technique's issues causes. Simultaneously, test efficiency is enhanced, and the whole test load's service life is extended.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于背包算法的发电机组负载平衡控制
发电机组的出厂测试和维护对于确保发电机组的平稳运行至关重要。为了确定发电机组的额定容量,经常需要进行发电机试验。在测试过程中,必须改变测试负载的范围以满足测试标准。传统的负载切换系统存在效率低、易误用、使用负载资源不均衡等问题。针对这些问题,本研究提出了一种基于背包算法的发电机组试验负荷匹配与平衡控制解决方案。将背包问题模型与多种组合优化算法相结合,可以进行仿真比较和分析。在实际试验中,将得到的最优控制方法与传统方法进行了比较。结果表明,将背包问题模型与离散二元粒子群算法相结合的背包算法能够更准确地匹配和应用测试载荷,成功地克服了旧方法存在的问题。同时提高了试验效率,延长了整个试验载荷的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1