Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting

A. Lucas, Xin Zhang
{"title":"Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting","authors":"A. Lucas, Xin Zhang","doi":"10.2139/ssrn.2470938","DOIUrl":null,"url":null,"abstract":"A simple methodology is presented for modeling time variation in volatilities and other higher order moments using a recursive updating scheme similar to the familiar RiskMetrics approach. We update parameters using the score of the forecasting distribution. This allows the parameter dynamics to adapt automatically to any non-normal data features and robustifies the subsequent estimates. The new approach nests several of the earlier extensions to the exponentially weighted moving average (EWMA) scheme. In addition, it can easily be extended to higher dimensions and alternative forecasting distributions. The method is applied to Value-at-Risk forecasting with (skewed) Student's t distributions and a time-varying degrees of freedom and/or skewness parameter. We show that the new method is competitive to or better than earlier methods in forecasting volatility of individual stock returns and exchange rate returns.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2470938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

A simple methodology is presented for modeling time variation in volatilities and other higher order moments using a recursive updating scheme similar to the familiar RiskMetrics approach. We update parameters using the score of the forecasting distribution. This allows the parameter dynamics to adapt automatically to any non-normal data features and robustifies the subsequent estimates. The new approach nests several of the earlier extensions to the exponentially weighted moving average (EWMA) scheme. In addition, it can easily be extended to higher dimensions and alternative forecasting distributions. The method is applied to Value-at-Risk forecasting with (skewed) Student's t distributions and a time-varying degrees of freedom and/or skewness parameter. We show that the new method is competitive to or better than earlier methods in forecasting volatility of individual stock returns and exchange rate returns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
得分驱动指数加权移动平均线和风险价值预测
提出了一种简单的方法来建模波动率和其他高阶矩的时间变化,使用类似于熟悉的RiskMetrics方法的递归更新方案。我们使用预测分布的分数来更新参数。这允许参数动态自动适应任何非正态数据特征,并鲁棒后续估计。新方法包含了指数加权移动平均(EWMA)方案的几个早期扩展。此外,它可以很容易地扩展到更高的维度和替代预测分布。该方法适用于(偏斜)学生t分布和时变自由度和/或偏度参数的风险值预测。结果表明,该方法在预测个股收益波动率和汇率收益波动率方面优于或具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1