Excited complex: Its nature and applications (Conference Presentation)

Jang‐Joo Kim, Chang‐Ki Moon, Hwang-Bum Kim
{"title":"Excited complex: Its nature and applications (Conference Presentation)","authors":"Jang‐Joo Kim, Chang‐Ki Moon, Hwang-Bum Kim","doi":"10.1117/12.2322802","DOIUrl":null,"url":null,"abstract":"Excited charge transfer complexes (Exciplex) formed between donor and acceptor materials are frequently encountered in organic photonic devices such as in organic light emitting diodes and organic photovoltaics. Formation of exciplexes can be easily identified by the observation of the red shifted emission from those of the component molecules. Generally the PL efficiency of the exciplexes is low so that OLEDs are designed not to form exciplexes at the organic/organic junctions. Formation of exciplexes at the D/A junction is also to be avoided in OPVs since it reduces the dissociation probability of geminate electron-hole pairs formed at the interface. In this presentation we will firstly discuss on the nature of exciplex including the electronic structure, emission processes and diffusion. Further discussion will be given to the application of exciplex forming systems as the triplet harvesting fluorescent molecular system and as the co-host for phosphorescent and fluorescent dopants for ultimate efficiency in OLEDs.","PeriodicalId":158502,"journal":{"name":"Organic Light Emitting Materials and Devices XXII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Light Emitting Materials and Devices XXII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2322802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Excited charge transfer complexes (Exciplex) formed between donor and acceptor materials are frequently encountered in organic photonic devices such as in organic light emitting diodes and organic photovoltaics. Formation of exciplexes can be easily identified by the observation of the red shifted emission from those of the component molecules. Generally the PL efficiency of the exciplexes is low so that OLEDs are designed not to form exciplexes at the organic/organic junctions. Formation of exciplexes at the D/A junction is also to be avoided in OPVs since it reduces the dissociation probability of geminate electron-hole pairs formed at the interface. In this presentation we will firstly discuss on the nature of exciplex including the electronic structure, emission processes and diffusion. Further discussion will be given to the application of exciplex forming systems as the triplet harvesting fluorescent molecular system and as the co-host for phosphorescent and fluorescent dopants for ultimate efficiency in OLEDs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激发态复合体:性质与应用(会议报告)
在有机发光二极管和有机光伏等有机光子器件中,经常会遇到在施主和受主材料之间形成的激发态电荷转移配合物。通过观察组成分子的红移发射,可以很容易地识别杂合体的形成。一般来说,杂合体的发光效率很低,因此oled被设计成不会在有机/有机连接处形成杂合体。在opv中也要避免在D/A结处形成异构体,因为它降低了在界面处形成的成对电子-空穴对的解离概率。在本报告中,我们将首先讨论外络合物的性质,包括电子结构、发射过程和扩散。进一步的讨论将给予异构体形成系统的应用,作为三重态收获荧光分子系统,作为磷光和荧光掺杂的共同宿主,以达到oled的最终效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HyperfluorescenceTM: Recent achievements of Kyulux materials Linear carbene metal amides as a new class of emitters for highly efficient solution-processed and vapor-deposited OLEDs (Conference Presentation) Optoelectronic hybrid perovskite materials and devices (Conference Presentation) High-efficiency and ultrapure-green light emitting diodes using colloidal 2D perovskites (Conference Presentation) Surface analytical investigation on stability of perovskite solar cell material (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1