A Gaussian Process Regression Model to Predict Path Loss for an Urban Environment

Seyi E. Olukanni, Ikechi Risi, Salifu. F. U., Johnson Oladipupo S.
{"title":"A Gaussian Process Regression Model to Predict Path Loss for an Urban Environment","authors":"Seyi E. Olukanni, Ikechi Risi, Salifu. F. U., Johnson Oladipupo S.","doi":"10.5815/ijmsc.2023.02.02","DOIUrl":null,"url":null,"abstract":": This research paper presents a Gaussian process regression (GPR) model for predicting path loss signal in an urban environment. The Gaussian process regression model was developed using a dataset of path loss signal measurements acquired in two urban environments in Nigeria. Three different kernel functions were selected and compared for their performance in the Gaussian process regression model, including the squared exponential kernel, the Matern kernel","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2023.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: This research paper presents a Gaussian process regression (GPR) model for predicting path loss signal in an urban environment. The Gaussian process regression model was developed using a dataset of path loss signal measurements acquired in two urban environments in Nigeria. Three different kernel functions were selected and compared for their performance in the Gaussian process regression model, including the squared exponential kernel, the Matern kernel
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯过程回归模型预测城市环境路径损失
本文提出了一种高斯过程回归(GPR)预测城市环境中路径损耗信号的模型。高斯过程回归模型是利用在尼日利亚两个城市环境中获得的路径损耗信号测量数据集开发的。选择了三种不同的核函数,并比较了它们在高斯过程回归模型中的性能,包括平方指数核和Matern核
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of two classes of 4-valent triCayley Graphs over Cyclic Group An Unorthodox Trapdoor Function Application of Mathematical Modeling: A Mathematical Model for Dengue Disease in Bangladesh A Novel Model for Recommending Information Systems with Suitable Cloud Computing Provider A Rigorous Euclidean Geometric Proof of the Cube Duplication Impossibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1