{"title":"A class-modularity for character recognition","authors":"Il-Seok Oh, Jin-Seon Lee, C. Suen","doi":"10.1109/ICDAR.2001.953756","DOIUrl":null,"url":null,"abstract":"A class-modular classifier can be characterized by two prominent features: low classifier complexity and independence of classes. While conventional character recognition systems adopting the class modularity are faithful to the first feature, they do not investigate the second one. Since a class can be handled independently of the other classes, the class-specific feature set and classifier architecture can be optimally designed for a specific class Here we propose a general framework for the class modularity that exploits fully both features and present four types of class-modular architecture. The neural network classifier is used for testing the framework A simultaneous selection of the feature set and network architecture is performed by the genetic algorithm. The effectiveness of the class-specific features and classifier architectures is confirmed by experimental results on the recognition of handwritten numerals.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A class-modular classifier can be characterized by two prominent features: low classifier complexity and independence of classes. While conventional character recognition systems adopting the class modularity are faithful to the first feature, they do not investigate the second one. Since a class can be handled independently of the other classes, the class-specific feature set and classifier architecture can be optimally designed for a specific class Here we propose a general framework for the class modularity that exploits fully both features and present four types of class-modular architecture. The neural network classifier is used for testing the framework A simultaneous selection of the feature set and network architecture is performed by the genetic algorithm. The effectiveness of the class-specific features and classifier architectures is confirmed by experimental results on the recognition of handwritten numerals.