Transformer Differential Protection with Neural Network Based Inrush Stabilization

W. Rebizant, D. Bejmert, L. Schiel
{"title":"Transformer Differential Protection with Neural Network Based Inrush Stabilization","authors":"W. Rebizant, D. Bejmert, L. Schiel","doi":"10.1109/PCT.2007.4538488","DOIUrl":null,"url":null,"abstract":"Application of artificial neural networks (ANN) for transformer differential protection stabilization against inrush conditions is presented. Three versions of the stabilization scheme are described. The best of them employs three ANNs fed with transformer terminal currents that has proven to be superior over the two other ANN schemes. The final solution combines the classification strengths of neural networks with commonly used second harmonic restraint, thus being a hybrid classification unit. To determine the most suitable ANN topology for the inrush classifier a genetic algorithm was used. The developed optimized neural inrush detection units have been tested with EMTP-ATP generated signals, proving better performance than traditionally used stabilization algorithms.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Application of artificial neural networks (ANN) for transformer differential protection stabilization against inrush conditions is presented. Three versions of the stabilization scheme are described. The best of them employs three ANNs fed with transformer terminal currents that has proven to be superior over the two other ANN schemes. The final solution combines the classification strengths of neural networks with commonly used second harmonic restraint, thus being a hybrid classification unit. To determine the most suitable ANN topology for the inrush classifier a genetic algorithm was used. The developed optimized neural inrush detection units have been tested with EMTP-ATP generated signals, proving better performance than traditionally used stabilization algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的励磁稳定变压器差动保护
介绍了人工神经网络在变压器差动保护励磁稳定中的应用。介绍了三种稳定化方案。其中最好的是采用三个人工神经网络馈送变压器终端电流,已被证明优于其他两种人工神经网络方案。最终的解决方案将神经网络的分类优势与常用的二次谐波约束相结合,成为一种混合分类单元。为了确定最合适的神经网络拓扑结构,采用了遗传算法。经过EMTP-ATP生成的信号测试,该优化神经涌浪检测单元的性能优于传统的稳定算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Northeast Asia Power Interconnection Routs and Representative Studies in South Korea PSO-based Hybrid Generating System Design Incorporating Reliability Evaluation and Generation/Load Forecasting Actual Problems Of The Distribution Cable Networks In Germany - Ageing And Structural Impact On The Reliability Study on Power Quality Control in Multiple Renewable Energy Hybrid MicroGrid System Configuration of a Large Scale Analog Emulator for Power System Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1