Design of a new outer-rotor flux-controllable vernier PM in-wheel motor drive for electric vehicle

Chunhua Liu
{"title":"Design of a new outer-rotor flux-controllable vernier PM in-wheel motor drive for electric vehicle","authors":"Chunhua Liu","doi":"10.1109/ICEMS.2011.6073579","DOIUrl":null,"url":null,"abstract":"This paper proposes a new in-wheel motor drive for electric vehicle (EV), which utilizes the outer-rotor topology to directly couple with the tire rims and hence removing the mechanical transmission. The key is to use the vernier structure for obtaining the high-speed to low-speed gear effect and achieving the high output torque at low speed operation. Also, the proposed motor drive adopts the DC field winding for performing the flux weakening control at high speed operation. Thus, this new in-wheel motor drive can smoothly operate within the speed range of 0∼1000rpm at different operation modes for EVs. The motor drive and its three-operation modes for EV operation, as well as the steady-state and transient performances are analyzed by using the time-stepping finite-element-method.","PeriodicalId":101507,"journal":{"name":"2011 International Conference on Electrical Machines and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS.2011.6073579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper proposes a new in-wheel motor drive for electric vehicle (EV), which utilizes the outer-rotor topology to directly couple with the tire rims and hence removing the mechanical transmission. The key is to use the vernier structure for obtaining the high-speed to low-speed gear effect and achieving the high output torque at low speed operation. Also, the proposed motor drive adopts the DC field winding for performing the flux weakening control at high speed operation. Thus, this new in-wheel motor drive can smoothly operate within the speed range of 0∼1000rpm at different operation modes for EVs. The motor drive and its three-operation modes for EV operation, as well as the steady-state and transient performances are analyzed by using the time-stepping finite-element-method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型电动汽车外转子磁控游标永磁轮式电机驱动设计
本文提出了一种新型的电动汽车轮毂电机驱动方案,该方案利用外转子拓扑结构与轮胎轮辋直接耦合,从而消除了机械传动。关键是利用游标结构获得高速转低速齿轮效应,实现低速运行时的高输出转矩。此外,所提出的电机驱动器采用直流励磁绕组进行高速运行时的磁链弱化控制。因此,这种新型轮内电机驱动可以在电动汽车的不同运行模式下,在0 ~ 1000rpm的转速范围内平稳运行。采用时间步进有限元法分析了电动汽车的电机驱动及其三种运行模式,以及电动汽车的稳态和瞬态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance investigation and comparison of line start-up permanent magnet synchronous motor with super premium efficiency Temperature rise calculation of high speed PM machine based on thermal-circuit method and 3D fluid field method To strengthen the construction of smart grid, to enhance the leaping development of new energy power generation Study on a hybrid PWM method under low switching frequency Failure detection of dual-redundancy BLDC motor based on wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1