CLaC at SemEval-2023 Task 2: Comparing Span-Prediction and Sequence-Labeling Approaches for NER

Harsh Verma, S. Bergler
{"title":"CLaC at SemEval-2023 Task 2: Comparing Span-Prediction and Sequence-Labeling Approaches for NER","authors":"Harsh Verma, S. Bergler","doi":"10.48550/arXiv.2305.03845","DOIUrl":null,"url":null,"abstract":"This paper summarizes the CLaC submission for the MultiCoNER 2 task which concerns the recognition of complex, fine-grained named entities. We compare two popular approaches for NER, namely SequenceLabeling and Span Prediction. We find that our best Span Prediction system performs slightly better than our best Sequence Labeling system on test data. Moreover, we find that using the larger version of XLM RoBERTa significantly improves performance. Post-competition experiments show that Span Prediction and Sequence Labeling approaches improve when they use special input tokens ([s] and [/s]) of XLM-RoBERTa. The code for training all models, preprocessing, and post-processing is available at https://github.com/harshshredding/semeval2023-multiconer-paper.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.03845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper summarizes the CLaC submission for the MultiCoNER 2 task which concerns the recognition of complex, fine-grained named entities. We compare two popular approaches for NER, namely SequenceLabeling and Span Prediction. We find that our best Span Prediction system performs slightly better than our best Sequence Labeling system on test data. Moreover, we find that using the larger version of XLM RoBERTa significantly improves performance. Post-competition experiments show that Span Prediction and Sequence Labeling approaches improve when they use special input tokens ([s] and [/s]) of XLM-RoBERTa. The code for training all models, preprocessing, and post-processing is available at https://github.com/harshshredding/semeval2023-multiconer-paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任务2:比较NER的跨度预测和序列标记方法
本文总结了MultiCoNER 2任务的CLaC提交,该任务涉及复杂的、细粒度的命名实体的识别。我们比较了两种流行的NER方法,即序列标记和跨度预测。我们发现我们的最佳Span预测系统在测试数据上的表现略好于我们的最佳序列标记系统。此外,我们发现使用较大版本的XLM RoBERTa可以显著提高性能。赛后实验表明,当使用XLM-RoBERTa的特殊输入标记([s]和[/s])时,Span预测和序列标记方法得到了改进。用于训练所有模型、预处理和后处理的代码可在https://github.com/harshshredding/semeval2023-multiconer-paper上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SemEval-2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts Mao-Zedong at SemEval-2023 Task 4: Label Represention Multi-Head Attention Model with Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification UAlberta at SemEval-2023 Task 1: Context Augmentation and Translation for Multilingual Visual Word Sense Disambiguation LCT-1 at SemEval-2023 Task 10: Pre-training and Multi-task Learning for Sexism Detection and Classification CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1