{"title":"Contextual Bandit Learning-Based Viewport Prediction for 360 Video","authors":"J. Heyse, M. T. Vega, F. D. Backere, F. Turck","doi":"10.1109/VR.2019.8797830","DOIUrl":null,"url":null,"abstract":"Accurately predicting where the user of a Virtual Reality (VR) application will be looking at in the near future improves the perceive quality of services, such as adaptive tile-based streaming or personalized online training. However, because of the unpredictability and dissimilarity of user behavior it is still a big challenge. In this work, we propose to use reinforcement learning, in particular contextual bandits, to solve this problem. The proposed solution tackles the prediction in two stages: (1) detection of movement; (2) prediction of direction. In order to prove its potential for VR services, the method was deployed on an adaptive tile-based VR streaming testbed, for benchmarking against a 3D trajectory extrapolation approach. Our results showed a significant improvement in terms of prediction error compared to the benchmark. This reduced prediction error also resulted in an enhancement on the perceived video quality.","PeriodicalId":315935,"journal":{"name":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2019.8797830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Accurately predicting where the user of a Virtual Reality (VR) application will be looking at in the near future improves the perceive quality of services, such as adaptive tile-based streaming or personalized online training. However, because of the unpredictability and dissimilarity of user behavior it is still a big challenge. In this work, we propose to use reinforcement learning, in particular contextual bandits, to solve this problem. The proposed solution tackles the prediction in two stages: (1) detection of movement; (2) prediction of direction. In order to prove its potential for VR services, the method was deployed on an adaptive tile-based VR streaming testbed, for benchmarking against a 3D trajectory extrapolation approach. Our results showed a significant improvement in terms of prediction error compared to the benchmark. This reduced prediction error also resulted in an enhancement on the perceived video quality.