Microwave Photonic Imaging Radiometer

T. Dillon, Andrew A. Wright, D. Mackrides, S. Shi, J. Murakowski, P. Yao, C. Schuetz, D. Prather
{"title":"Microwave Photonic Imaging Radiometer","authors":"T. Dillon, Andrew A. Wright, D. Mackrides, S. Shi, J. Murakowski, P. Yao, C. Schuetz, D. Prather","doi":"10.1109/MICRORAD.2018.8430696","DOIUrl":null,"url":null,"abstract":"Nano-satellites are gaining in popularity due to their low cost and ease of deployment. Reaching orbit as secondary payload to larger spacecraft enables science grade missions at disruptively low cost. Such miniaturized platforms impose severe constraints on the size, weight, and power (SWaP) of the payload, however, making large antenna apertures difficult to realize. Meanwhile, relatively large apertures are needed to achieve desired spatial resolution for earth observing sensors at microwave frequencies. To this end, our distributed aperture array technology dramatically reduces the SWaP of such sensors, thus enabling deployment of large radio frequency apertures on spaceborne platforms. The sensor performs optical upconversion of the upwelling microwave radiation to optical frequencies, using high-speed, broadband electro-optic mixers, and subsequent coherent optical reconstruction of the passive thermal microwave scene, without the need for bulky and power hungry digital correlation engines or substantial post-processing. Notably, the optical processing technique images all of the beams in the array concurrently, forming a real-time video stream of radiometric brightness temperatures. Herein, we describe a spaceborne, 1-D pushbroom passive millimeter wave sensor utilizing optical upconversion and aperture synthesis, at a nominal detection frequency of 36 GHz, and deployed on a 12U CubeSat for remote sensing and earth science applications.","PeriodicalId":423162,"journal":{"name":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRORAD.2018.8430696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-satellites are gaining in popularity due to their low cost and ease of deployment. Reaching orbit as secondary payload to larger spacecraft enables science grade missions at disruptively low cost. Such miniaturized platforms impose severe constraints on the size, weight, and power (SWaP) of the payload, however, making large antenna apertures difficult to realize. Meanwhile, relatively large apertures are needed to achieve desired spatial resolution for earth observing sensors at microwave frequencies. To this end, our distributed aperture array technology dramatically reduces the SWaP of such sensors, thus enabling deployment of large radio frequency apertures on spaceborne platforms. The sensor performs optical upconversion of the upwelling microwave radiation to optical frequencies, using high-speed, broadband electro-optic mixers, and subsequent coherent optical reconstruction of the passive thermal microwave scene, without the need for bulky and power hungry digital correlation engines or substantial post-processing. Notably, the optical processing technique images all of the beams in the array concurrently, forming a real-time video stream of radiometric brightness temperatures. Herein, we describe a spaceborne, 1-D pushbroom passive millimeter wave sensor utilizing optical upconversion and aperture synthesis, at a nominal detection frequency of 36 GHz, and deployed on a 12U CubeSat for remote sensing and earth science applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波光子成像辐射计
纳米卫星由于其低成本和易于部署而越来越受欢迎。作为大型航天器的次要有效载荷进入轨道,可以以极低的成本完成科学级任务。然而,这种小型化平台对有效载荷的尺寸、重量和功率(SWaP)施加了严格的限制,使得大天线孔径难以实现。同时,在微波频率下,对地观测传感器需要较大的孔径才能达到理想的空间分辨率。为此,我们的分布式孔径阵列技术大大降低了此类传感器的SWaP,从而能够在星载平台上部署大射频孔径。该传感器使用高速宽带电光混频器,将上升流微波辐射进行光学上转换,然后对被动热微波场景进行相干光学重建,而不需要庞大且耗电的数字相关引擎或大量的后处理。值得注意的是,光学处理技术同时对阵列中的所有光束进行成像,形成辐射亮度温度的实时视频流。本文描述了一种利用光学上转换和孔径合成技术的星载一维推力式无源毫米波传感器,其标称检测频率为36ghz,部署在12U CubeSat上,用于遥感和地球科学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration of RapidScat Brightness Temperature Generic Simulator for Conical Scanning Microwave Radiometers Ultra-High Performance C & L-Band Radiometer System for Future Spaceborne Ocean Missions The Radio Frequency and Calibration Assembly for the MetOp Second Generation MicroWave Imager (MWI) Data Processing and Experimental Performance of GIMS-II (Geostationary Interferometric Microwave Sounder-Second Generation) Demonstrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1