K. Cho, S. Thirumala, X. Liu, Niharika Thakuria, Zhihong Chen, S. Gupta
{"title":"Utilizing Valley-Spin Hall Effect in WSe2 for Low Power Non-Volatile Flip-Flop Design","authors":"K. Cho, S. Thirumala, X. Liu, Niharika Thakuria, Zhihong Chen, S. Gupta","doi":"10.1109/DRC50226.2020.9135153","DOIUrl":null,"url":null,"abstract":"By virtue of the broken inversion symmetry and preserved time-reversal symmetry in monolayer WSe 2 , electrons from K and K’ valleys exhibit opposite spins [1] . Thus, when charge current ( I C ) flows, transverse spin currents ( I S ) are generated perpendicular to I C with up/down spins ( I S↑ /I S↓ ) flowing in opposite directions due to valley-spin hall effect (VSHE) [1] , [2] ( Fig. 1(a) ). The generated spins are out-of-plane and can be coupled with ferromagnets (FMs) with perpendicular magnetic anisotropy (PMA) to control their magnetizations [2] . Hence, magnetization switching energy can potentially be reduced compared to Giant Spin Hall Effect (GSHE) based switching of FMs with in-plane magnetic anisotropy (IMA) [3] . To effectively harness VSHE for circuit applications, careful device-circuit co-design is needed.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By virtue of the broken inversion symmetry and preserved time-reversal symmetry in monolayer WSe 2 , electrons from K and K’ valleys exhibit opposite spins [1] . Thus, when charge current ( I C ) flows, transverse spin currents ( I S ) are generated perpendicular to I C with up/down spins ( I S↑ /I S↓ ) flowing in opposite directions due to valley-spin hall effect (VSHE) [1] , [2] ( Fig. 1(a) ). The generated spins are out-of-plane and can be coupled with ferromagnets (FMs) with perpendicular magnetic anisotropy (PMA) to control their magnetizations [2] . Hence, magnetization switching energy can potentially be reduced compared to Giant Spin Hall Effect (GSHE) based switching of FMs with in-plane magnetic anisotropy (IMA) [3] . To effectively harness VSHE for circuit applications, careful device-circuit co-design is needed.