When Simplicity Offers a Benefit, Not a Cost: Closed-Form Estimation of the GARCH(1,1) Model that Enhances the Efficiency of Quasi-Maximum Likelihood

Todd Prono
{"title":"When Simplicity Offers a Benefit, Not a Cost: Closed-Form Estimation of the GARCH(1,1) Model that Enhances the Efficiency of Quasi-Maximum Likelihood","authors":"Todd Prono","doi":"10.17016/FEDS.2019.030","DOIUrl":null,"url":null,"abstract":"Simple, multi-step estimators are developed for the popular GARCH(1,1) model, where these estimators are either available entirely in closed form or dependent upon a preliminary estimate from, for example, quasi-maximum likelihood. Identification sources to asymmetry in the model's innovations, casting skewness as an instrument in a linear, two-stage least squares estimator. Properties of regular variation coupled with point process theory establish the distributional limits of these estimators as stable, though highly non-Gaussian, with slow convergence rates relative to the ??n-case. Moment existence criteria necessary for these results are consistent with the heavy-tailed features of many financial returns. In light-tailed cases that support asymptotic normality for these simple estimators, conditions are discovered where the simple estimators can enhance the asymptotic efficiency of quasi-maximum likelihood estimation. In small samples, extensive Monte Carlo experime nts reveal these efficiency enhancements to be available for (very) heavy tailed cases. Consequently, the proposed simple estimators are members of the class of multi-step estimators aimed at improving the efficiency of the quasi-maximum likelihood estimator.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/FEDS.2019.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simple, multi-step estimators are developed for the popular GARCH(1,1) model, where these estimators are either available entirely in closed form or dependent upon a preliminary estimate from, for example, quasi-maximum likelihood. Identification sources to asymmetry in the model's innovations, casting skewness as an instrument in a linear, two-stage least squares estimator. Properties of regular variation coupled with point process theory establish the distributional limits of these estimators as stable, though highly non-Gaussian, with slow convergence rates relative to the ??n-case. Moment existence criteria necessary for these results are consistent with the heavy-tailed features of many financial returns. In light-tailed cases that support asymptotic normality for these simple estimators, conditions are discovered where the simple estimators can enhance the asymptotic efficiency of quasi-maximum likelihood estimation. In small samples, extensive Monte Carlo experime nts reveal these efficiency enhancements to be available for (very) heavy tailed cases. Consequently, the proposed simple estimators are members of the class of multi-step estimators aimed at improving the efficiency of the quasi-maximum likelihood estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当简单带来好处而不是代价:提高拟极大似然效率的GARCH(1,1)模型的封闭估计
为流行的GARCH(1,1)模型开发了简单的多步估计器,其中这些估计器要么完全以封闭形式可用,要么依赖于例如准极大似然的初步估计。识别模型创新中不对称的来源,将偏度作为线性两阶段最小二乘估计器的工具。正则变分的性质与点过程理论相结合,证明了这些估计量的分布极限是稳定的,尽管高度非高斯分布,但相对于n-情况的收敛速度较慢。这些结果所必需的矩存在标准与许多金融回报的重尾特征是一致的。在支持这些简单估计的渐近正态性的轻尾情况下,发现了简单估计可以提高拟极大似然估计的渐近效率的条件。在小样本中,广泛的蒙特卡罗实验表明,这些效率增强可用于(非常)重尾情况。因此,所提出的简单估计量属于旨在提高拟极大似然估计效率的多步估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Determination in Tensor Factor Model A Toolkit for Robust Risk Assessment Using F-Divergences One-factor Hull-White Model Calibration for CVA - Part I: Instrument Selection With a Kink High-Dimensional Granger Causality Tests with an Application to VIX and News Selective Linear Segmentation For Detecting Relevant Parameter Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1