Automated Labeling and Classification of Business Rules from Software Requirement Specifications

Preethu Rose Anish, Prashant Lawhatre, Ranit Chatterjee, Vivek Joshi, S. Ghaisas
{"title":"Automated Labeling and Classification of Business Rules from Software Requirement Specifications","authors":"Preethu Rose Anish, Prashant Lawhatre, Ranit Chatterjee, Vivek Joshi, S. Ghaisas","doi":"10.1145/3510457.3513071","DOIUrl":null,"url":null,"abstract":"Business Rules (BRs) are a critical artifact in the requirements elicitation phase of the software development life cycle. Several taxonomies have been proposed for classification of BRs. In this paper, we utilize Ross's BR classification schema and present an approach to automatically label and classify BRs along this schema. Our approach uses Data Programming (DP) for generating labeled training data needed for training two deep learning-based models to classify the BRs. We obtained an average labeling accuracy of 0.73 for all the BR classes using DP. Upon evaluating the approach on industryspecific dataset, we obtained highest weighted F-score (0.69) with a Bi-LSTM with attention-based model.","PeriodicalId":119790,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510457.3513071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Business Rules (BRs) are a critical artifact in the requirements elicitation phase of the software development life cycle. Several taxonomies have been proposed for classification of BRs. In this paper, we utilize Ross's BR classification schema and present an approach to automatically label and classify BRs along this schema. Our approach uses Data Programming (DP) for generating labeled training data needed for training two deep learning-based models to classify the BRs. We obtained an average labeling accuracy of 0.73 for all the BR classes using DP. Upon evaluating the approach on industryspecific dataset, we obtained highest weighted F-score (0.69) with a Bi-LSTM with attention-based model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软件需求规范中业务规则的自动标记和分类
业务规则(br)是软件开发生命周期的需求提取阶段中的关键工件。已经提出了几种分类方法来对br进行分类。本文利用Ross的BR分类模式,提出了一种基于该模式的BR自动标注和分类方法。我们的方法使用数据编程(DP)来生成标记的训练数据,用于训练两个基于深度学习的模型来对br进行分类。我们使用DP获得了所有BR类别的平均标记精度为0.73。通过对特定行业数据集的评估,我们获得了基于注意力模型的Bi-LSTM的最高加权f值(0.69)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry's Cry for Tools that Support Large-Scale Refactoring Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction* What's bothering developers in code review? The Impact of Flaky Tests on Historical Test Prioritization on Chrome Surveying the Developer Experience of Flaky Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1