MISELA: 1-minute sea-level analysis global dataset

Petra Zemunik, J. Šepić, Havu Pellikka, Leon Ćatipović, I. Vilibić
{"title":"MISELA: 1-minute sea-level analysis global dataset","authors":"Petra Zemunik, J. Šepić, Havu Pellikka, Leon Ćatipović, I. Vilibić","doi":"10.5194/ESSD-2021-134","DOIUrl":null,"url":null,"abstract":"Abstract. Sea-level observations provide information on a variety of processes occurring over different temporal and spatial scales that may contribute to coastal flooding and hazards. However, global research of sea-level extremes is restricted to hourly datasets, which prevent quantification and analyses of processes occurring at timescales between a few minutes and a few hours. These shorter period processes, like seiches, meteotsunamis, infragravity and coastal waves, may even dominate in low-tidal basins. Therefore, a new global 1-minute sea-level dataset – MISELA (Minute Sea-Level Analysis) – has been developed, encompassing quality-checked records of nonseismic sea-level oscillations at tsunami timescales (T  https://doi.org/10.14284/456 , Zemunik et al., 2021b). This paper describes data quality-control procedures applied to the MISELA dataset, world and regional coverage of tide-gauge sites and lengths of time-series. The dataset is appropriate for global, regional or local research of atmospherically-induced high-frequency sea-level oscillations, which should be included in the overall sea-level extremes assessments.","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2021-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. Sea-level observations provide information on a variety of processes occurring over different temporal and spatial scales that may contribute to coastal flooding and hazards. However, global research of sea-level extremes is restricted to hourly datasets, which prevent quantification and analyses of processes occurring at timescales between a few minutes and a few hours. These shorter period processes, like seiches, meteotsunamis, infragravity and coastal waves, may even dominate in low-tidal basins. Therefore, a new global 1-minute sea-level dataset – MISELA (Minute Sea-Level Analysis) – has been developed, encompassing quality-checked records of nonseismic sea-level oscillations at tsunami timescales (T  https://doi.org/10.14284/456 , Zemunik et al., 2021b). This paper describes data quality-control procedures applied to the MISELA dataset, world and regional coverage of tide-gauge sites and lengths of time-series. The dataset is appropriate for global, regional or local research of atmospherically-induced high-frequency sea-level oscillations, which should be included in the overall sea-level extremes assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MISELA: 1分钟海平面分析全球数据集
摘要海平面观测提供了在不同时间和空间尺度上发生的各种过程的信息,这些过程可能导致沿海洪水和灾害。然而,全球对海平面极端事件的研究仅限于每小时的数据集,这妨碍了对在几分钟到几小时的时间尺度上发生的过程进行量化和分析。这些较短周期的过程,如海啸、气象海啸、重力不足和海岸波,甚至可能在低潮盆地占主导地位。因此,我们开发了一个新的全球1分钟海平面数据集——MISELA (Minute sea-level Analysis,分钟海平面分析),其中包含海啸时间尺度下非地震海平面振荡的质量检查记录(T https://doi.org/10.14284/456, Zemunik et al., 2021b)。本文介绍了应用于MISELA数据集的数据质量控制程序,潮汐测量站点的世界和区域覆盖以及时间序列的长度。该数据集适用于全球、区域或地方的大气引起的高频海平面振荡研究,这应包括在总体海平面极端事件评估中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1