{"title":"3.3 Twinning of crystals","authors":"T. Hahn, H. Klapper","doi":"10.1107/97809553602060000917","DOIUrl":null,"url":null,"abstract":"This second chapter in Part 3 on twinning and domain structures deals with the twinning of crystals in all of its forms: growth twins, transformation twins and deformation twins. The treatment ranges from macroscopic considerations of the geometric orientation relations (twin laws) and the morphology of twins to the microscopic (atomistic) structures of the twin boundaries. Each of the following topics is accompanied by illustrative examples of actual twins and many figures: basic concepts and definitions: twinning, crystallographic orientation relations, composite (twin) symmetry, twin law; morphology of twins, description of twins by black–white symmetry; origin of twins and genetic classification; lattice classification of twinning: twinning by merohedry, pseudo-merohedry and ‘reticular' merohedry; twin boundaries: mechanical (strain) and electrical compatibility of interfaces; extension of the Sapriel approach to growth and deformation twins; twin boundaries: twin displacement and fault vectors; twin boundaries: atomistic structural models and HRTEM investigations of twin interfaces, twin textures, twinning dislocations, coherency of twin interfaces. \n \n \nKeywords: \n \nΣ3 bicrystal boundaries; \nΣ3 twin interface; \neigensymmetry; \nBrazil twins; \nDauphine twins; \nDauphine–Brazil twins; \nFriedel's lattice theory; \nJapanese twins; \nLa Gardette twins; \nMontmartre twins; \nSapriel approach; \naggregates; \nalternative twin operations; \nantiphase boundaries; \nbicrystals; \nblack and white symmetry groups; \nboundary energy; \ncomplete twins; \ncomposite symmetry; \ncomposition plane; \ncontact plane; \ncontact relations; \ncontact twins; \ncyclic twins; \ndeformation twins; \ndetwinning; \ndiperiodic twins; \ndislocations; \ndomain states; \ndomains; \ndovetail twins; \nelectrical constraints; \nfault vectors; \nferroelastic–ferroelectric phases; \nferroelastic phases; \nferroelastic twins; \nferroelasticity; \ngrowth-sector boundaries; \ngrowth twins; \nhigh-resolution transmission electron microscopy; \nintergrowths; \ninversion twins; \nisostructural crystals; \nlattice coincidence; \nlattice pseudosymmetry; \nlow-energy boundaries; \nmechanical twins; \nmerohedral twins; \nmerohedry; \nmonoperiodic twins; \nmorphological classification; \nmultiple twins; \nnanocrystalline materials; \nneedle domains; \nnon-ferroelastic twins; \nnon-merohedral twins; \nnon-pyroelectric acentric crystals; \norientation relations; \norientation states; \npenetration twins; \npentagonal–decagonal twins; \npermissible boundaries; \nplagioclase twins; \npolycrystalline aggregates; \npolysynthetic twins; \npseudo-coincidence; \npseudo-merohedral twins; \npseudo-merohedry; \nreflection twins; \nrotation twins; \nsector twins; \nshear strain; \nsimple twins; \nspinel law; \nspinel twins; \nspontaneous shear; \nswitching of domains; \ntransformation twins; \ntranslation twins; \ntriperiodic twins; \ntweed microstructure; \ntwin axes; \ntwin boundaries; \ntwin displacement vector; \ntwin domains; \ntwin elements; \ntwin formation; \ntwin interfaces; \ntwin lattice index; \ntwin laws; \ntwin obliquity; \ntwin operations; \ntwin rotations; \ntwin textures; \ntwinning; \ntwinning dislocations; \ntwinning relation; \ntwins; \ntwins of twins","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
3.3晶体的孪生
第三部分关于孪晶和畴结构的第二章讨论了所有形式的晶体孪晶:生长孪晶、转变孪晶和变形孪晶。处理范围从几何取向关系的宏观考虑(孪定律)和孪晶的形态到孪晶边界的微观(原子)结构。以下每个主题都附有实际双胞胎和许多图形的说明示例:基本概念和定义:双胞胎,晶体取向关系,复合(双胞胎)对称,双胞胎定律;孪生体的形态学,用黑白对称描述孪生体;双胞胎的起源与遗传分类孪晶的点阵分类:单晶、伪单晶和“网状”单晶的孪晶双边界:界面的机械(应变)和电气兼容性;Sapriel方法在生长和变形孪晶中的推广;双边界:双位移和双断层矢量;孪晶边界:孪晶界面的原子结构模型和HRTEM研究,孪晶织构,孪晶位错,孪晶界面的相干性。关键词:Σ3双晶界;Σ3双接口;eigensymmetry;巴西双胞胎;王妃双胞胎;Dauphine-Brazil双胞胎;弗里德尔晶格理论;日本的双胞胎;La Gardette双胞胎;蒙马特双胞胎;Sapriel方法;骨料;备选孪生操作;反相边界;双晶体;黑白对称群;边界能量;完整的双胞胎;组合对称;接合面;面接触;接触关系;双胞胎接触;循环的双胞胎;变形的双胞胎;detwinning;diperiodic双胞胎;混乱;域;域;燕尾双胞胎;电气约束;故障向量;ferroelastic-ferroelectric阶段;铁弹性的阶段;铁弹性的双胞胎;铁弹性;发展行业的界限;增长的双胞胎;高分辨率透射电镜;共生;反演的双胞胎;同型的晶体;晶格巧合;晶格伪对称;低能的界限;机械的双胞胎;缺面的双胞胎;缺面象;monoperiodic双胞胎;形态分类;多个双胞胎;纳米晶体材料;针域;non-ferroelastic双胞胎;non-merohedral双胞胎;非热释电无心晶体;取向关系;取向;渗透双胞胎;pentagonal-decagonal双胞胎;允许的界限;斜长石的双胞胎;多晶聚合;多数综合的双胞胎;pseudo-coincidence;pseudo-merohedral双胞胎;pseudo-merohedry;反射的双胞胎;旋转的双胞胎;部门的双胞胎;剪切应变;简单的双胞胎;尖晶石;尖晶石的双胞胎;自发的剪切;域切换;转换的双胞胎;翻译双胞胎;triperiodic双胞胎;粗花呢微观结构;两轴;双边界;双位移矢量;双域;双元素;双胞胎的形成;双接口;双晶格指数;双胞胎的法律;双倾斜;双操作;双旋转;双纹理;双晶;孪生混乱;孪生关系;双胞胎;双胞胎中的双胞胎
本文章由计算机程序翻译,如有差异,请以英文原文为准。