Speech Dereverberation in Short Time Fourier Transform Domain with Crossband Effect Compensation

T. Nakatania, T. Yoshiokaa, K. Kinoshita, M. Miyoshi, B. Juang
{"title":"Speech Dereverberation in Short Time Fourier Transform Domain with Crossband Effect Compensation","authors":"T. Nakatania, T. Yoshiokaa, K. Kinoshita, M. Miyoshi, B. Juang","doi":"10.1109/HSCMA.2008.4538726","DOIUrl":null,"url":null,"abstract":"It has recently been shown that the maximum likelihood estimation approach with a time-varying source model is very effective in achieving speech dereverberation based only on a short observation. In addition, STFT domain processing has been shown to be promising for implementing this dereverberation approach in a computationally efficient way. This paper presents a way of further improving the STFT domain speech dereverberation in terms of both computational cost and accuracy. One important issue here is how to calculate time-domain convolution with a long filter precisely using STFT. We introduce an STFT domain filtering method with crossband effect compensation for this purpose. Experimental results show that the proposed method allows us to implement the dereverberation algorithm in the STFT domain more precisely with less computational cost than the existing method.","PeriodicalId":129827,"journal":{"name":"2008 Hands-Free Speech Communication and Microphone Arrays","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Hands-Free Speech Communication and Microphone Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSCMA.2008.4538726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

It has recently been shown that the maximum likelihood estimation approach with a time-varying source model is very effective in achieving speech dereverberation based only on a short observation. In addition, STFT domain processing has been shown to be promising for implementing this dereverberation approach in a computationally efficient way. This paper presents a way of further improving the STFT domain speech dereverberation in terms of both computational cost and accuracy. One important issue here is how to calculate time-domain convolution with a long filter precisely using STFT. We introduce an STFT domain filtering method with crossband effect compensation for this purpose. Experimental results show that the proposed method allows us to implement the dereverberation algorithm in the STFT domain more precisely with less computational cost than the existing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交叉带效应补偿的短时傅里叶变换域语音去噪
最近的研究表明,时变源模型的最大似然估计方法在实现仅基于短时间观察的语音去噪方面非常有效。此外,STFT域处理已被证明有希望以计算高效的方式实现这种去噪方法。本文提出了一种从计算成本和精度两方面进一步改进STFT域语音去噪的方法。这里的一个重要问题是如何使用STFT精确地计算长滤波器的时域卷积。为此,我们提出了一种带交叉带效应补偿的STFT域滤波方法。实验结果表明,与现有方法相比,该方法可以更精确地实现STFT域中的去噪算法,且计算量更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical Arrays Near Boundaries HMM-Based Mask Estimation for a Speech Recognition Front-End Using Computational Auditory Scene Analysis Single Channel Enhancement for Speech Recognition Binaural and Multiple-Microphone Signal Processing Motivated by Auditory Perception Robust Auto-Focusing Wideband Bayesian Beamforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1