{"title":"Reference-based Image Super-Resolution by Dual-Variational AutoEncoder","authors":"Mengyao Yang, Junpeng Qi","doi":"10.1109/CCCI52664.2021.9583193","DOIUrl":null,"url":null,"abstract":"Due to severe information loss of low-resolution images, the development of single-image super-resolution methods is limited. Recently, the reference-based image super-resolution methods, which super-resolve the low-resolution inputs with the guidance of high-resolution reference images are emerging. In this paper, we design a Dual-Variational AutoEncoder (DVAE) for reference-based image super-resolution task, which can learn the high-frequency information and latent distribution of the high-resolution reference images as priors to improve the restoration quality of image super-resolution. Moreover, a hierarchical variational autoencoder strategy is exploited to further study latent space. Complementary to a quantitative evaluation, we demonstrate the effectiveness of the proposed approach.","PeriodicalId":136382,"journal":{"name":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCI52664.2021.9583193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Due to severe information loss of low-resolution images, the development of single-image super-resolution methods is limited. Recently, the reference-based image super-resolution methods, which super-resolve the low-resolution inputs with the guidance of high-resolution reference images are emerging. In this paper, we design a Dual-Variational AutoEncoder (DVAE) for reference-based image super-resolution task, which can learn the high-frequency information and latent distribution of the high-resolution reference images as priors to improve the restoration quality of image super-resolution. Moreover, a hierarchical variational autoencoder strategy is exploited to further study latent space. Complementary to a quantitative evaluation, we demonstrate the effectiveness of the proposed approach.