A variational component splitting approach for finite generalized Dirichlet mixture models

Wentao Fan, N. Bouguila
{"title":"A variational component splitting approach for finite generalized Dirichlet mixture models","authors":"Wentao Fan, N. Bouguila","doi":"10.1109/ICCITECHNOL.2012.6285806","DOIUrl":null,"url":null,"abstract":"In this paper, a component splitting and local model selection method is proposed to address the mission of learning and selecting generalized Dirichlet (GD) mixture model with feature selection in an incremental variational way. Under the proposed principled variational framework, we simultaneously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e. both model and features selection) of the GD mixture. The effectiveness of the proposed approach is evaluated using synthetic data as well as real a challenging application involving image categorization.","PeriodicalId":435718,"journal":{"name":"2012 International Conference on Communications and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2012.6285806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, a component splitting and local model selection method is proposed to address the mission of learning and selecting generalized Dirichlet (GD) mixture model with feature selection in an incremental variational way. Under the proposed principled variational framework, we simultaneously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e. both model and features selection) of the GD mixture. The effectiveness of the proposed approach is evaluated using synthetic data as well as real a challenging application involving image categorization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限广义Dirichlet混合模型的变分分量分裂方法
针对以增量变分方式学习和选择具有特征选择的广义Dirichlet (GD)混合模型的问题,提出了一种成分分割和局部模型选择方法。在提出的原则变分框架下,我们同时以封闭形式估计所有涉及的参数,并确定GD混合物的复杂性(即模型和特征选择)。利用合成数据以及涉及图像分类的具有挑战性的实际应用来评估所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the BEP performance of binary noncoherent modulation schemes in frequency-nonselective M2M double Hoyt fading channels Sequential spectrum sensing based on higher-order statistics for cognitive radios TPC-H benchmarking of Pig Latin on a Hadoop cluster Enhanced Slotted ALOHA protocol with collision processing and relay cooperation Case study: Impacts on information systems governance, agility and strategic flexibility of simultaneous implementation of several process approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1