ChinaStyle: A Mask-Aware Generative Adversarial Network for Chinese Traditional Image Translation

Yuan Wang, W. Zhang, Peng Chen
{"title":"ChinaStyle: A Mask-Aware Generative Adversarial Network for Chinese Traditional Image Translation","authors":"Yuan Wang, W. Zhang, Peng Chen","doi":"10.1145/3355088.3365148","DOIUrl":null,"url":null,"abstract":"GANs make it effective to generate artworks using appropriate collections. However, most training dataset either contain paintings that were only from one artist or contain only one category. There is few training datasets for Chinese traditional figure paintings. This paper presents a new high-quality dataset named ChinaStyle Dataset including six categories, containing 1913 images totally. We further proposes Mask-Aware Generative Adversarial Networks (MA-GAN) to transfer realistic portraiture to different styles of Chinese paintings. Different from existing mothed, MA-GAN uses a single model only once with our unpaired dataset. Besides, Mask-aware strategy is used to generate free-hand style of Chinese paintings. In addition, a color preserved loss is proposed to alleviate the color free problem. Experimental results and user study demonstrate that MA-GAN achieves a natural and competitive performance compared with existing methods.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

GANs make it effective to generate artworks using appropriate collections. However, most training dataset either contain paintings that were only from one artist or contain only one category. There is few training datasets for Chinese traditional figure paintings. This paper presents a new high-quality dataset named ChinaStyle Dataset including six categories, containing 1913 images totally. We further proposes Mask-Aware Generative Adversarial Networks (MA-GAN) to transfer realistic portraiture to different styles of Chinese paintings. Different from existing mothed, MA-GAN uses a single model only once with our unpaired dataset. Besides, Mask-aware strategy is used to generate free-hand style of Chinese paintings. In addition, a color preserved loss is proposed to alleviate the color free problem. Experimental results and user study demonstrate that MA-GAN achieves a natural and competitive performance compared with existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国风格:基于面具感知的生成对抗网络的中国传统图像翻译
gan可以有效地使用适当的集合生成艺术品。然而,大多数训练数据集要么只包含来自一个艺术家的绘画,要么只包含一个类别。中国传统人物画的训练数据集很少。本文提出了一个新的高质量数据集——中国风格数据集,包括6个类别,共包含1913幅图像。我们进一步提出了面具感知生成对抗网络(MA-GAN),将现实主义肖像转换为不同风格的中国画。与现有的方法不同,MA-GAN只使用单个模型一次。此外,运用面具感知策略,产生写意风格的中国画。此外,还提出了一种颜色保留损失的方法来缓解无颜色问题。实验结果和用户研究表明,与现有方法相比,MA-GAN具有自然的性能和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster RPNN: Rendering Clouds with Latent Space Light Probes Flexible Ray Traversal with an Extended Programming Model Augmented Reality Guided Respiratory Liver Tumors Punctures: A Preliminary Feasibility Study Beyond the Screen Embedded Concave Micromirror Array-based See-through Light Field Near-eye Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1