{"title":"Streaming codes for a double-link burst erasure channel","authors":"D. Lui, Ahmed Badr, A. Khisti","doi":"10.1109/CWIT.2011.5872144","DOIUrl":null,"url":null,"abstract":"A sender and receiver are connected by two links, which both pass through a burst erasure channel. The channel induces an erasure burst of length B onto both links, but the bursts are separated by d time units. Source packets arrive at the sender, and are encoded with a streaming code such that the receiver can decode with a delay T. If source packet s[t] arrives at the sender at time t, then the receiver must be able to decode s[t] by time t+T from its received packets. Given the parameters B, T and d, we find the upper bound for the rate of the streaming code, and also discover codes that can operate at capacity for certain parameter values. The code constructions also internally make use of SCo codes. Finally, we find that by exploiting the dependence of the burst erasure locations on either link, we can achieve a higher rate than if we simply used single-link SCo codes on each link.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A sender and receiver are connected by two links, which both pass through a burst erasure channel. The channel induces an erasure burst of length B onto both links, but the bursts are separated by d time units. Source packets arrive at the sender, and are encoded with a streaming code such that the receiver can decode with a delay T. If source packet s[t] arrives at the sender at time t, then the receiver must be able to decode s[t] by time t+T from its received packets. Given the parameters B, T and d, we find the upper bound for the rate of the streaming code, and also discover codes that can operate at capacity for certain parameter values. The code constructions also internally make use of SCo codes. Finally, we find that by exploiting the dependence of the burst erasure locations on either link, we can achieve a higher rate than if we simply used single-link SCo codes on each link.