Accurate reification of complete supertype information for dynamic analysis on the JVM

Andrea Rosà, Eduardo Rosales, Walter Binder
{"title":"Accurate reification of complete supertype information for dynamic analysis on the JVM","authors":"Andrea Rosà, Eduardo Rosales, Walter Binder","doi":"10.1145/3136040.3136061","DOIUrl":null,"url":null,"abstract":"Reflective supertype information (RSI) is useful for many instrumentation-based dynamic analyses on the Java Virtual Machine (JVM). On the one hand, while such information can be obtained when performing the instrumentation within the same JVM process executing the instrumented program, in-process instrumentation severely limits the code coverage of the analysis. On the other hand, performing the instrumentation in a separate process can achieve full code coverage, but complete RSI is generally not available, often requiring expensive runtime checks in the instrumented program. Providing accurate and complete RSI in the instrumentation process is challenging because of dynamic class loading and classloader namespaces. In this paper, we present a novel technique to accurately reify complete RSI in a separate instrumentation process. We implement our technique in the dynamic analysis framework DiSL and evaluate it on a task profiler, achieving speedups of up to 45% for an analysis with full code coverage.","PeriodicalId":398999,"journal":{"name":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136040.3136061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Reflective supertype information (RSI) is useful for many instrumentation-based dynamic analyses on the Java Virtual Machine (JVM). On the one hand, while such information can be obtained when performing the instrumentation within the same JVM process executing the instrumented program, in-process instrumentation severely limits the code coverage of the analysis. On the other hand, performing the instrumentation in a separate process can achieve full code coverage, but complete RSI is generally not available, often requiring expensive runtime checks in the instrumented program. Providing accurate and complete RSI in the instrumentation process is challenging because of dynamic class loading and classloader namespaces. In this paper, we present a novel technique to accurately reify complete RSI in a separate instrumentation process. We implement our technique in the dynamic analysis framework DiSL and evaluate it on a task profiler, achieving speedups of up to 45% for an analysis with full code coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在JVM上进行动态分析的完整超类型信息的精确具体化
反射超类型信息(RSI)对于Java虚拟机(JVM)上许多基于仪器的动态分析非常有用。一方面,虽然在执行被检测程序的同一JVM进程内执行插装可以获得这些信息,但进程内插装严重限制了分析的代码覆盖率。另一方面,在单独的进程中执行插装可以实现完整的代码覆盖,但是完整的RSI通常是不可用的,通常需要在插装的程序中进行昂贵的运行时检查。由于动态类加载和类加载器名称空间的关系,在插装过程中提供准确和完整的RSI是一项挑战。在本文中,我们提出了一种新的技术,可以在单独的仪器过程中精确地再现完整的RSI。我们在动态分析框架DiSL中实现了我们的技术,并在任务分析器上对其进行了评估,在完全代码覆盖的分析中实现了高达45%的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the impact of natural language processing over feature location in models Rewriting a shallow DSL using a GHC compiler extension Avoiding useless mutants Towards compositional and generative tensor optimizations A Haskell compiler for signal transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1