Romain Chayot, N. Thomas, C. Poulliat, M. Boucheret, N. V. Wambeke, G. Lesthievent
{"title":"Channel estimation and equalization for CPM with application for aeronautical communications via a satellite link","authors":"Romain Chayot, N. Thomas, C. Poulliat, M. Boucheret, N. V. Wambeke, G. Lesthievent","doi":"10.1109/MILCOM.2017.8170746","DOIUrl":null,"url":null,"abstract":"In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.