Multi-Package Co-Design for Chiplet Integration

Zhen Zhuang, Bei Yu, Kai-Yuan Chao, Tsung-Yi Ho
{"title":"Multi-Package Co-Design for Chiplet Integration","authors":"Zhen Zhuang, Bei Yu, Kai-Yuan Chao, Tsung-Yi Ho","doi":"10.1145/3508352.3549404","DOIUrl":null,"url":null,"abstract":"Due to the cost and design complexity associated with advanced technology nodes, it is difficult for traditional monolithic System-on-Chip to follow the Moore’s Law, which means the economic benefits have been weakened. Semiconductor industries are looking for advanced packages to improve the economic advantages. Since the multi-chiplet architecture supporting heterogeneous integration has the robust re-usability and effective cost reduction, chiplet integration has become the mainstream of advanced packages. Nowadays, the number of mounted chiplets in a package is continuously increasing with the requirement of high system performance. However, the large area caused by the increasing of chiplets leads to the serious reliability issues, including warpage and bump stress, which worsens the yield and cost. The multi-package architecture, which can distribute chiplets to multiple packages and use less area of each package, is a popular alternative to enhance the reliability and reduce the cost in advanced packages. However, the primary challenge of the multi-package architecture lies in the tradeoff between the inter-package costs, i.e., the interconnection among packages, and the intra-package costs, i.e., the reliability caused by warpage and bump stress. Therefore, a co-design methodology is indispensable to optimize multiple packages simultaneously to improve the quality of the whole system. To tackle this challenge, we adopt mathematical programming methods in the multi-package co-design problem regarding the nature of the synergistic optimization of multiple packages. To the best of our knowledge, this is the first work to solve the multi-package co-design problem.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the cost and design complexity associated with advanced technology nodes, it is difficult for traditional monolithic System-on-Chip to follow the Moore’s Law, which means the economic benefits have been weakened. Semiconductor industries are looking for advanced packages to improve the economic advantages. Since the multi-chiplet architecture supporting heterogeneous integration has the robust re-usability and effective cost reduction, chiplet integration has become the mainstream of advanced packages. Nowadays, the number of mounted chiplets in a package is continuously increasing with the requirement of high system performance. However, the large area caused by the increasing of chiplets leads to the serious reliability issues, including warpage and bump stress, which worsens the yield and cost. The multi-package architecture, which can distribute chiplets to multiple packages and use less area of each package, is a popular alternative to enhance the reliability and reduce the cost in advanced packages. However, the primary challenge of the multi-package architecture lies in the tradeoff between the inter-package costs, i.e., the interconnection among packages, and the intra-package costs, i.e., the reliability caused by warpage and bump stress. Therefore, a co-design methodology is indispensable to optimize multiple packages simultaneously to improve the quality of the whole system. To tackle this challenge, we adopt mathematical programming methods in the multi-package co-design problem regarding the nature of the synergistic optimization of multiple packages. To the best of our knowledge, this is the first work to solve the multi-package co-design problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芯片集成的多封装协同设计
由于与先进技术节点相关的成本和设计复杂性,传统的单片系统芯片难以遵循摩尔定律,这意味着经济效益被削弱。半导体行业正在寻求先进的封装,以提高经济优势。由于支持异构集成的多芯片架构具有强大的可重用性和有效的成本降低,芯片集成已成为先进封装的主流。如今,随着对系统性能的要求越来越高,封装中的芯片数量也在不断增加。然而,由于小晶片的增加而导致的大面积导致了严重的可靠性问题,包括翘曲和碰撞应力,从而恶化了成品率和成本。多封装架构可以将小芯片分布到多个封装中,并且每个封装占用的面积更小,是高级封装中提高可靠性和降低成本的一种流行的替代方案。然而,多封装架构的主要挑战在于如何在封装间成本(即封装之间的互连)和封装内成本(即翘曲和碰撞应力引起的可靠性)之间进行权衡。因此,为了同时优化多个封装以提高整个系统的质量,协同设计方法是必不可少的。为了解决这一挑战,我们在多封装协同设计问题中采用了数学规划方法,考虑了多封装协同优化的本质。据我们所知,这是第一个解决多封装协同设计问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1