{"title":"Fire Damage Characteristics of Fire-Resistant Coating Materials in Petrochemical Plant Facilities","authors":"Gyu-hwan Cho, J. Ahn, Kisoo Jeon","doi":"10.9798/kosham.2023.23.3.105","DOIUrl":null,"url":null,"abstract":"As industrial facilities, petrochemical plants require prompt investigation, diagnosis, and recovery in the event of fire damage associated with disasters and accidents. Due to the characteristics of petrochemical plants, which are mostly composed of steel structures with fire-resistant coating materials, the coating materials are the first to be damaged. Accordingly, in this study, the fire damage characteristics of fire-resistant coating materials were analyzed experimentally, verifying the possibility of estimating the heating temperatures based on such characteristics. The results show a correlation between the foam expansion ratio and the heating temperature of intumescent fire-resistant coating materials with foam properties. A significant correlation was found between the density and adhesion strength ratio and the heating temperature of spray-applied fire-resistant coatings. The results suggest the possibility of estimating the heating temperatures based solely on the fire damage characteristics of the coating materials, which could provide a platform for simplifying existing methods for investigating and diagnosing fire damage.","PeriodicalId":416980,"journal":{"name":"Journal of the Korean Society of Hazard Mitigation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Hazard Mitigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9798/kosham.2023.23.3.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As industrial facilities, petrochemical plants require prompt investigation, diagnosis, and recovery in the event of fire damage associated with disasters and accidents. Due to the characteristics of petrochemical plants, which are mostly composed of steel structures with fire-resistant coating materials, the coating materials are the first to be damaged. Accordingly, in this study, the fire damage characteristics of fire-resistant coating materials were analyzed experimentally, verifying the possibility of estimating the heating temperatures based on such characteristics. The results show a correlation between the foam expansion ratio and the heating temperature of intumescent fire-resistant coating materials with foam properties. A significant correlation was found between the density and adhesion strength ratio and the heating temperature of spray-applied fire-resistant coatings. The results suggest the possibility of estimating the heating temperatures based solely on the fire damage characteristics of the coating materials, which could provide a platform for simplifying existing methods for investigating and diagnosing fire damage.