A Situated Context Model for Resolution and Generation of Referring Expressions

H. Zender, G. Kruijff, Ivana Kruijff-Korbayová
{"title":"A Situated Context Model for Resolution and Generation of Referring Expressions","authors":"H. Zender, G. Kruijff, Ivana Kruijff-Korbayová","doi":"10.3115/1610195.1610217","DOIUrl":null,"url":null,"abstract":"The background for this paper is the aim to build robotic assistants that can \"naturally\" interact with humans. One prerequisite for this is that the robot can correctly identify objects or places a user refers to, and produce comprehensible references itself. As robots typically act in environments that are larger than what is immediately perceivable, the problem arises how to identify the appropriate context, against which to resolve or produce a referring expression (RE). Existing algorithms for generating REs generally bypass this problem by assuming a given context. In this paper, we explicitly address this problem, proposing a method for context determination in large-scale space. We show how it can be applied both for resolving and producing REs.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The background for this paper is the aim to build robotic assistants that can "naturally" interact with humans. One prerequisite for this is that the robot can correctly identify objects or places a user refers to, and produce comprehensible references itself. As robots typically act in environments that are larger than what is immediately perceivable, the problem arises how to identify the appropriate context, against which to resolve or produce a referring expression (RE). Existing algorithms for generating REs generally bypass this problem by assuming a given context. In this paper, we explicitly address this problem, proposing a method for context determination in large-scale space. We show how it can be applied both for resolving and producing REs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引用表达式解析与生成的情境模型
这篇论文的背景是建立能够“自然”与人类互动的机器人助手。其中一个先决条件是,机器人能够正确识别用户所指的物体或地点,并自己生成可理解的参考。由于机器人通常在比直接可感知的环境更大的环境中行动,因此问题出现了如何识别适当的上下文,根据上下文来解决或产生引用表达式(RE)。现有的生成正则的算法通常通过假设给定的上下文来绕过这个问题。在本文中,我们明确地解决了这个问题,提出了一种在大尺度空间中确定上下文的方法。我们将展示如何将其应用于解析和生成REs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1