A Deep Transfer Learning-Based Comparative Study for Detection of Malaria Disease

Emel Soylu
{"title":"A Deep Transfer Learning-Based Comparative Study for Detection of Malaria Disease","authors":"Emel Soylu","doi":"10.35377/saucis...1197119","DOIUrl":null,"url":null,"abstract":"Malaria is a disease caused by a parasite. The parasite is transmitted to humans through the bite of infected mosquitoes. Thousands of people die every year due to malaria. When this disease is diagnosed early, it can be fully treated with medication. Diagnosis of malaria can be made according to the presence of parasites in the blood taken from the patient. In this study, malaria detection and diagnosis study were performed using The Malaria dataset containing a total of 27,558 cell images with samples of equally parasitized and uninfected cells from thin blood smear slide images of segmented cells. It is possible to detect malaria from microscopic blood smear images via modern deep learning techniques. In this study, 5 of the popular convolutional neural network architectures for malaria detection from cell images were retrained to find the best combination of architecture and learning algorithm. AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 architectures from pre-trained networks were used, their hyperparameters were adjusted and their performances were compared. In this study, a maximum 96.53% accuracy rate was achieved with MobileNet-v2 architecture using the adam learning algorithm","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1197119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria is a disease caused by a parasite. The parasite is transmitted to humans through the bite of infected mosquitoes. Thousands of people die every year due to malaria. When this disease is diagnosed early, it can be fully treated with medication. Diagnosis of malaria can be made according to the presence of parasites in the blood taken from the patient. In this study, malaria detection and diagnosis study were performed using The Malaria dataset containing a total of 27,558 cell images with samples of equally parasitized and uninfected cells from thin blood smear slide images of segmented cells. It is possible to detect malaria from microscopic blood smear images via modern deep learning techniques. In this study, 5 of the popular convolutional neural network architectures for malaria detection from cell images were retrained to find the best combination of architecture and learning algorithm. AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 architectures from pre-trained networks were used, their hyperparameters were adjusted and their performances were compared. In this study, a maximum 96.53% accuracy rate was achieved with MobileNet-v2 architecture using the adam learning algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度迁移学习的疟疾疾病检测比较研究
疟疾是一种由寄生虫引起的疾病。这种寄生虫通过受感染蚊子的叮咬传播给人类。每年有成千上万的人死于疟疾。当这种疾病被早期诊断出来时,它可以用药物完全治疗。疟疾的诊断可以根据从病人身上采集的血液中是否存在寄生虫来确定。在本研究中,使用疟疾数据集进行疟疾检测和诊断研究,该数据集包含27,558个细胞图像,其中包括来自分段细胞的薄血涂片图像的同等寄生和未感染细胞样本。通过现代深度学习技术,可以从显微镜下的血液涂片图像中检测疟疾。在本研究中,对5种流行的用于细胞图像疟疾检测的卷积神经网络架构进行了重新训练,以找到架构和学习算法的最佳组合。使用预训练网络中的AlexNet、GoogLeNet、ResNet-50、MobileNet-v2、VGG-16架构,调整其超参数并比较其性能。在本研究中,使用adam学习算法,在MobileNet-v2架构下,准确率最高达到96.53%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1