M. Gustafsson, D. Sjoberg, A. Bernland, G. Kristensson, C. Sohl
{"title":"Sum rules and physical bounds in electromagnetic theory","authors":"M. Gustafsson, D. Sjoberg, A. Bernland, G. Kristensson, C. Sohl","doi":"10.1109/URSI-EMTS.2010.5637030","DOIUrl":null,"url":null,"abstract":"Sum rules are useful in many branches of physics and engineering as they relate all spectrum parameter values with their asymptotic expansions. Properties of the dynamic response can hence be inferred by the, in many cases much simpler, static response. This has e.g., been used for lossless matching networks, radar absorbers, extinction cross section, partial realized gain of antennas, high-impedance surfaces, transmission cross section, transmission coefficients, and temporal dispersion of metamaterials. Here, several sum rules and their associated physical bounds are reviewed and it is shown that integral identities for Herglotz functions offer a unified approach in deriving them.","PeriodicalId":404116,"journal":{"name":"2010 URSI International Symposium on Electromagnetic Theory","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 URSI International Symposium on Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2010.5637030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sum rules are useful in many branches of physics and engineering as they relate all spectrum parameter values with their asymptotic expansions. Properties of the dynamic response can hence be inferred by the, in many cases much simpler, static response. This has e.g., been used for lossless matching networks, radar absorbers, extinction cross section, partial realized gain of antennas, high-impedance surfaces, transmission cross section, transmission coefficients, and temporal dispersion of metamaterials. Here, several sum rules and their associated physical bounds are reviewed and it is shown that integral identities for Herglotz functions offer a unified approach in deriving them.