An estimation theory-based approach for speech enhancement

Mirishkar Sai Ganesh, M. Karthik, B. Patnaik
{"title":"An estimation theory-based approach for speech enhancement","authors":"Mirishkar Sai Ganesh, M. Karthik, B. Patnaik","doi":"10.1109/ICSCN.2017.8085702","DOIUrl":null,"url":null,"abstract":"This contribution presents an efficient technique for the speech enhancement of a signal using statistical estimators which are based on squared magnitude spectra's. In any speech enhancement systems, an estimate of power spectral density is required. As conventional methods for noise elimination fails due to the non-stationary properties of the speech signal, in this context, minimum mean square error (MMSE) and maximum a posterior (MAP) estimators are derived based on Gaussian statistical model. The acquisition function which is obtained in the MAP estimator is same as the acquisition function used in the ideal binary masking. As a binary masking depends on the signal-to-noise ratio (SNR), if the SNR value exceeds 0 dB then the value assumes to be 1 otherwise 0. The results accomplished using the proposed estimator embarked with better enhancement of the speech signal than the standard minimum mean square error spectral power estimator, with low residual noise and low speech distortion.","PeriodicalId":383458,"journal":{"name":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2017.8085702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This contribution presents an efficient technique for the speech enhancement of a signal using statistical estimators which are based on squared magnitude spectra's. In any speech enhancement systems, an estimate of power spectral density is required. As conventional methods for noise elimination fails due to the non-stationary properties of the speech signal, in this context, minimum mean square error (MMSE) and maximum a posterior (MAP) estimators are derived based on Gaussian statistical model. The acquisition function which is obtained in the MAP estimator is same as the acquisition function used in the ideal binary masking. As a binary masking depends on the signal-to-noise ratio (SNR), if the SNR value exceeds 0 dB then the value assumes to be 1 otherwise 0. The results accomplished using the proposed estimator embarked with better enhancement of the speech signal than the standard minimum mean square error spectral power estimator, with low residual noise and low speech distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于估计理论的语音增强方法
这一贡献提出了一种利用基于平方幅度谱的统计估计器对信号进行语音增强的有效技术。在任何语音增强系统中,都需要对功率谱密度进行估计。由于语音信号的非平稳特性,传统的噪声消除方法难以实现,在此背景下,基于高斯统计模型推导出最小均方误差(MMSE)和最大后验(MAP)估计量。在MAP估计器中得到的采集函数与理想二值掩码中使用的采集函数相同。由于二进制掩蔽取决于信噪比(SNR),如果SNR值超过0 dB,则该值假定为1,否则为0。结果表明,该估计器比标准最小均方误差谱功率估计器对语音信号有更好的增强效果,且残差小,语音失真小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of programmable read only memory using reversible decoder on FPGA Literature survey on traffic-based server load balancing using SDN and open flow A survey on ARP cache poisoning and techniques for detection and mitigation Machine condition monitoring using audio signature analysis Robust audio watermarking for monitoring and information embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1