Pedestrian association and localization in monocular FIR video sequence

Mayank Bansal, Shunguang Wu, J. Eledath
{"title":"Pedestrian association and localization in monocular FIR video sequence","authors":"Mayank Bansal, Shunguang Wu, J. Eledath","doi":"10.1109/CVPRW.2009.5204132","DOIUrl":null,"url":null,"abstract":"This paper addresses the frame-to-frame data association and state estimation problems in localization of a pedestrian relative to a moving vehicle from a monocular far infra-red video sequence. Using a novel application of the hierarchical model-based motion estimation framework, we are able to use the image appearance information to solve the frame-to-frame data association problem and estimate a sub-pixel accurate height ratio for a pedestrian in two frames. Then, to localize the pedestrian, we propose a novel approach of using the pedestrian height ratio estimates to guide an interacting multiple-hypothesis-mode/height filtering algorithm instead of using a constant pedestrian height model. Experiments on several IR sequences demonstrate that this approach achieves results comparable to those from a known pedestrian height thus avoiding errors from a constant height model based approach.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the frame-to-frame data association and state estimation problems in localization of a pedestrian relative to a moving vehicle from a monocular far infra-red video sequence. Using a novel application of the hierarchical model-based motion estimation framework, we are able to use the image appearance information to solve the frame-to-frame data association problem and estimate a sub-pixel accurate height ratio for a pedestrian in two frames. Then, to localize the pedestrian, we propose a novel approach of using the pedestrian height ratio estimates to guide an interacting multiple-hypothesis-mode/height filtering algorithm instead of using a constant pedestrian height model. Experiments on several IR sequences demonstrate that this approach achieves results comparable to those from a known pedestrian height thus avoiding errors from a constant height model based approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单目FIR视频序列中的行人关联与定位
本文研究了单目远红外视频序列中行人相对于移动车辆定位的帧间数据关联和状态估计问题。利用基于层次模型的运动估计框架的新应用,我们能够利用图像外观信息解决帧间数据关联问题,并在两帧内估计出亚像素精确的行人高度比。然后,为了对行人进行定位,我们提出了一种新的方法,即使用行人高度比估计来指导交互多假设模式/高度滤波算法,而不是使用恒定的行人高度模型。在多个红外序列上的实验表明,该方法可以获得与已知行人高度相当的结果,从而避免了基于恒定高度模型的方法的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1