{"title":"Do similar foragers flock together? Nonbreeding foraging behavior and its impact on mixed-species flocking associations in a subtropical region","authors":"H. H. Jones, Mitchell J Walters, S. Robinson","doi":"10.1093/auk/ukz079","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mixed-species flocks are ubiquitous in forest bird communities, yet the extent to which positive (facilitative) or negative (competitive) interactions structure these assemblages has been a subject of debate. Here, we describe the fine-scale foraging ecology and use network analysis to quantify mixed-species flocking interactions of an insectivorous bird community in hardwood forests of north-central Florida. Our goal was to determine if similarly foraging species are more (facilitation hypothesis) or less (competition hypothesis) likely to associate in flocks, and if foraging ecology can explain intraspecific abundance patterns within flocks. We quantified attack maneuvers, foraging substrate, and foraging microhabitat of all 17 common insectivorous species in these forests and characterized the composition of 92 flocks encountered. Flocking was important in our community; 14 of 17 species joined more than 5% of flocks, and 10 species had flocking propensities of over 0.80. Our results supported both hypothesized mechanisms structuring flock composition. Species had distinct, well-defined foraging niches during the nonbreeding season, but foraging niche overlap among flocking species was greater than expected by chance. Consistent with the facilitation hypothesis, we found that similarly foraging species were significantly more likely to associate in flocks, a result driven by lower association strengths in large-bodied woodpeckers. We found no evidence of assortment by foraging behavior, however, likely because foraging behavior and substrate use showed strong niche partitioning at the fine scale within our community. Intraspecific abundance patterns were significantly linked to foraging substrate use, with live leaf use correlated with high within-flock abundance and relative abundance at study sites. Species that specialized on comparatively less abundant substrates (tree trunks, epiphytes, dead leaves) joined flocks as singletons, showed lower relative abundance, and may exhibit nonbreeding territoriality. Our results highlight the importance of foraging substrate use and mixed-species flocks in structuring the nonbreeding ecology of migratory birds.","PeriodicalId":382448,"journal":{"name":"The Auk","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Auk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/auk/ukz079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
ABSTRACT Mixed-species flocks are ubiquitous in forest bird communities, yet the extent to which positive (facilitative) or negative (competitive) interactions structure these assemblages has been a subject of debate. Here, we describe the fine-scale foraging ecology and use network analysis to quantify mixed-species flocking interactions of an insectivorous bird community in hardwood forests of north-central Florida. Our goal was to determine if similarly foraging species are more (facilitation hypothesis) or less (competition hypothesis) likely to associate in flocks, and if foraging ecology can explain intraspecific abundance patterns within flocks. We quantified attack maneuvers, foraging substrate, and foraging microhabitat of all 17 common insectivorous species in these forests and characterized the composition of 92 flocks encountered. Flocking was important in our community; 14 of 17 species joined more than 5% of flocks, and 10 species had flocking propensities of over 0.80. Our results supported both hypothesized mechanisms structuring flock composition. Species had distinct, well-defined foraging niches during the nonbreeding season, but foraging niche overlap among flocking species was greater than expected by chance. Consistent with the facilitation hypothesis, we found that similarly foraging species were significantly more likely to associate in flocks, a result driven by lower association strengths in large-bodied woodpeckers. We found no evidence of assortment by foraging behavior, however, likely because foraging behavior and substrate use showed strong niche partitioning at the fine scale within our community. Intraspecific abundance patterns were significantly linked to foraging substrate use, with live leaf use correlated with high within-flock abundance and relative abundance at study sites. Species that specialized on comparatively less abundant substrates (tree trunks, epiphytes, dead leaves) joined flocks as singletons, showed lower relative abundance, and may exhibit nonbreeding territoriality. Our results highlight the importance of foraging substrate use and mixed-species flocks in structuring the nonbreeding ecology of migratory birds.