Online Algorithms for Covering and Packing Problems with Convex Objectives

Y. Azar, Niv Buchbinder, T-H. Hubert Chan, Shahar Chen, I. Cohen, Anupam Gupta, Zhiyi Huang, N. Kang, V. Nagarajan, J. Naor, Debmalya Panigrahi
{"title":"Online Algorithms for Covering and Packing Problems with Convex Objectives","authors":"Y. Azar, Niv Buchbinder, T-H. Hubert Chan, Shahar Chen, I. Cohen, Anupam Gupta, Zhiyi Huang, N. Kang, V. Nagarajan, J. Naor, Debmalya Panigrahi","doi":"10.1109/FOCS.2016.24","DOIUrl":null,"url":null,"abstract":"We present online algorithms for covering and packing problems with (non-linear) convex objectives. The convex covering problem is defined as: min<sub>xϵ</sub>R<sub>+</sub><sup>n</sup>f(x) s.t. Ax ≥ 1, where f:R<sub>+</sub><sup>n</sup> → R<sub>+</sub> is a monotone convex function, and A is an m×n matrix with non-negative entries. In the online version, a new row of the constraint matrix, representing a new covering constraint, is revealed in each step and the algorithm is required to maintain a feasible and monotonically non-decreasing assignment x over time. We also consider a convex packing problem defined as: max<sub>yϵR+</sub><sup>m</sup> Σ<sub>j=1</sub><sup>m</sup> yj - g(A<sup>T</sup> y), where g:R<sub>+</sub><sup>n</sup>→R<sub>+</sub> is a monotone convex function. In the online version, each variable yj arrives online and the algorithm must decide the value of yj on its arrival. This represents the Fenchel dual of the convex covering program, when g is the convex conjugate of f. We use a primal-dual approach to give online algorithms for these generic problems, and use them to simplify, unify, and improve upon previous results for several applications.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

We present online algorithms for covering and packing problems with (non-linear) convex objectives. The convex covering problem is defined as: minR+nf(x) s.t. Ax ≥ 1, where f:R+n → R+ is a monotone convex function, and A is an m×n matrix with non-negative entries. In the online version, a new row of the constraint matrix, representing a new covering constraint, is revealed in each step and the algorithm is required to maintain a feasible and monotonically non-decreasing assignment x over time. We also consider a convex packing problem defined as: maxyϵR+m Σj=1m yj - g(AT y), where g:R+n→R+ is a monotone convex function. In the online version, each variable yj arrives online and the algorithm must decide the value of yj on its arrival. This represents the Fenchel dual of the convex covering program, when g is the convex conjugate of f. We use a primal-dual approach to give online algorithms for these generic problems, and use them to simplify, unify, and improve upon previous results for several applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凸目标覆盖与包装问题的在线算法
我们提出了覆盖和包装问题的在线算法与(非线性)凸目标。定义凸覆盖问题为:minxϵR+nf(x) s.t.a x≥1,其中f:R+n→R+为单调凸函数,a为一个非负项的m×n矩阵。在在线版本中,每一步都会显示约束矩阵的新行,代表一个新的覆盖约束,并且要求算法随时间保持可行且单调不递减的赋值x。我们还考虑了一个定义为maxyϵR+m Σj=1m yj - g(AT y)的凸填充问题,其中g:R+n→R+是一个单调凸函数。在在线版本中,每个变量yj在线到达,算法必须在其到达时确定yj的值。当g是f的凸共轭时,这表示凸覆盖规划的Fenchel对偶。我们使用原始对偶方法给出这些一般问题的在线算法,并使用它们来简化,统一和改进先前几个应用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential Lower Bounds for Monotone Span Programs Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product Polynomial-Time Tensor Decompositions with Sum-of-Squares Decremental Single-Source Reachability and Strongly Connected Components in Õ(m√n) Total Update Time NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1