L1-based photometric stereo via augmented lagrange multiplier method

Kyungdon Joo, Tae-Hyun Oh, In-So Kweon
{"title":"L1-based photometric stereo via augmented lagrange multiplier method","authors":"Kyungdon Joo, Tae-Hyun Oh, In-So Kweon","doi":"10.1109/URAI.2013.6677405","DOIUrl":null,"url":null,"abstract":"Recently, the sparsity model has been applied to photometric stereo by modeling non-Lambertian artifacts as sparse components. As one of these efforts, we present l1-based photometric stereo for the non-Lambertian corruptions. A solution method was derived using the Augmented Lagrange Multiplier (ALM) method, which effectively solves the constrained problem by solving the sub-problems for surface normal and sparse corruptions iteratively. Experiments demonstrate the applicability of our method by comparing with the Least Square method and the l1 baseline method.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the sparsity model has been applied to photometric stereo by modeling non-Lambertian artifacts as sparse components. As one of these efforts, we present l1-based photometric stereo for the non-Lambertian corruptions. A solution method was derived using the Augmented Lagrange Multiplier (ALM) method, which effectively solves the constrained problem by solving the sub-problems for surface normal and sparse corruptions iteratively. Experiments demonstrate the applicability of our method by comparing with the Least Square method and the l1 baseline method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于l1的增广拉格朗日乘子法光度立体
近年来,稀疏模型通过将非朗伯氏伪像建模为稀疏分量,应用于光度立体图像中。作为这些努力之一,我们提出了基于11的非朗伯腐蚀的光度立体。利用增广拉格朗日乘法器(ALM)方法,通过迭代求解表面法向和稀疏腐蚀的子问题,有效地解决了约束问题。通过与最小二乘法和l1基线法的比较,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leader-follower formation control using infrared camera with reflective tag Optimal mission planning for underwater environment Mobile robot localization using indistinguishable artificial landmarks A study of collision avoidance between service robot and human at corner — Analysis of human behavior at corner Concept of variable transmission for tendon driven mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1