Radar target classification based on radial basis function and modified radial basis function networks

Liu Guo-sui, Wang Yunhong, Yang Chunling, Z. Dequan
{"title":"Radar target classification based on radial basis function and modified radial basis function networks","authors":"Liu Guo-sui, Wang Yunhong, Yang Chunling, Z. Dequan","doi":"10.1109/ICR.1996.573808","DOIUrl":null,"url":null,"abstract":"This paper discusses the radial basis function (RBF) neural networks used in the radar target classification. To enhance the classification rate, the structure of the modified radial basis function (MRBF) neural network is proposed. Two kinds of MRBF networks which are called the MRBF1 network and the MRBF2 network are discussed in this paper. From the theory as well as computer simulations, we find that the performance of the MRBF network is superior to the RBF network and the MRBF2 network gets higher classification rate than the MRBF1 network.","PeriodicalId":144063,"journal":{"name":"Proceedings of International Radar Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.1996.573808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper discusses the radial basis function (RBF) neural networks used in the radar target classification. To enhance the classification rate, the structure of the modified radial basis function (MRBF) neural network is proposed. Two kinds of MRBF networks which are called the MRBF1 network and the MRBF2 network are discussed in this paper. From the theory as well as computer simulations, we find that the performance of the MRBF network is superior to the RBF network and the MRBF2 network gets higher classification rate than the MRBF1 network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数和改进径向基函数网络的雷达目标分类
讨论了径向基函数神经网络在雷达目标分类中的应用。为了提高分类率,提出了改进径向基函数(MRBF)神经网络结构。本文讨论了MRBF网络的两种类型,即MRBF1网络和MRBF2网络。通过理论和计算机仿真,我们发现MRBF网络的性能优于RBF网络,MRBF2网络的分类率高于MRBF1网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive beamforming of thinned stepped frequency waveforms applied to imaging Improvements on the range alignment of the motion compensation for ISAR imaging Prediction and representation for wideband signatures of radar targets Recurrent neural network for high-resolution radar ship target recognition The skew-canceling method in spatial-temporal processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1