Reliable Temporally Consistent Feature Adaptation for Visual Object Tracking

Goutam Yelluru Gopal, Maria A. Amer
{"title":"Reliable Temporally Consistent Feature Adaptation for Visual Object Tracking","authors":"Goutam Yelluru Gopal, Maria A. Amer","doi":"10.1109/ICIP40778.2020.9190957","DOIUrl":null,"url":null,"abstract":"Correlation Filter (CF) based trackers have been the frontiers on various object tracking benchmarks. Use of multiple features and sophisticated learning methods have increased the accuracy of tracking results. However, the contribution of features are often fixed throughout the video sequence. Unreliable features lead to erroneous target localization and result in tracking failures. To alleviate this problem, we propose a method for online adaptation of feature weights based on their reliability. Our method also includes the notion of temporal consistency, to handle noisy reliability estimates. The two objectives are coupled to model a convex optimization problem for robust learning of feature weights. We also propose an algorithm to efficiently solve the resulting optimization problem, without hindering tracking speed. Results on VOT2018, TC128 and NfS30 datasets show that proposed method improves the performance of baseline CF trackers.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Correlation Filter (CF) based trackers have been the frontiers on various object tracking benchmarks. Use of multiple features and sophisticated learning methods have increased the accuracy of tracking results. However, the contribution of features are often fixed throughout the video sequence. Unreliable features lead to erroneous target localization and result in tracking failures. To alleviate this problem, we propose a method for online adaptation of feature weights based on their reliability. Our method also includes the notion of temporal consistency, to handle noisy reliability estimates. The two objectives are coupled to model a convex optimization problem for robust learning of feature weights. We also propose an algorithm to efficiently solve the resulting optimization problem, without hindering tracking speed. Results on VOT2018, TC128 and NfS30 datasets show that proposed method improves the performance of baseline CF trackers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可靠的时间一致特征自适应视觉目标跟踪
基于相关滤波器(CF)的跟踪器已经成为各种目标跟踪基准的前沿。使用多种特征和复杂的学习方法提高了跟踪结果的准确性。然而,在整个视频序列中,特征的贡献通常是固定的。不可靠的特征会导致目标定位错误,导致跟踪失败。为了解决这一问题,我们提出了一种基于可靠性的特征权值在线自适应方法。我们的方法还包括时间一致性的概念,以处理有噪声的可靠性估计。这两个目标是耦合的,以建立一个凸优化问题的鲁棒学习特征权值。我们还提出了一种算法,在不影响跟踪速度的情况下有效地解决所产生的优化问题。在VOT2018, TC128和NfS30数据集上的结果表明,该方法提高了基线CF跟踪器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1