{"title":"A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows","authors":"S. Hou, J. Sterling, Shiyi Chen, G. Doolen","doi":"10.1090/fic/006/12","DOIUrl":null,"url":null,"abstract":"A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is applied to a two-dimensional driven cavity flow for studying dynamics and the Reynolds number dependence of the flow structures. The substitution of other subgrid models, such as the dynamic subgrid model, in the framework of the LB method is discussed.","PeriodicalId":436460,"journal":{"name":"arXiv: Cellular Automata and Lattice Gases","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/fic/006/12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278
Abstract
A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is applied to a two-dimensional driven cavity flow for studying dynamics and the Reynolds number dependence of the flow structures. The substitution of other subgrid models, such as the dynamic subgrid model, in the framework of the LB method is discussed.