Variants of Differential Evolution for Multi-Objective Optimization

K. Zielinski, R. Laur
{"title":"Variants of Differential Evolution for Multi-Objective Optimization","authors":"K. Zielinski, R. Laur","doi":"10.1109/MCDM.2007.369422","DOIUrl":null,"url":null,"abstract":"In multi-objective optimization not only fast convergence is important, but it is also necessary to keep enough diversity so that the whole Pareto-optimal front can be found. In this work four variants of differential evolution are examined that differ in the selection scheme and in the assignment of crowding distance. The assumption is checked that the variants differ in convergence speed and amount of diversity. The performance is shown for 1000 consecutive generations, so that different behavior over time can be detected","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In multi-objective optimization not only fast convergence is important, but it is also necessary to keep enough diversity so that the whole Pareto-optimal front can be found. In this work four variants of differential evolution are examined that differ in the selection scheme and in the assignment of crowding distance. The assumption is checked that the variants differ in convergence speed and amount of diversity. The performance is shown for 1000 consecutive generations, so that different behavior over time can be detected
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标优化的微分进化变体
在多目标优化中,不仅需要快速收敛,而且需要保持足够的多样性,以便找到整个pareto最优前沿。在这项工作中,研究了在选择方案和拥挤距离分配方面不同的差异进化的四种变体。假设这些变量在收敛速度和多样性数量上有所不同。性能显示为连续1000代,因此可以检测到随时间变化的不同行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1