Control by Learning in a Temperature System Using a Maximum Sensibility Neural Network

D. Cabrera-Gaona, L. Torres-Treviño, A. Rodríguez-Liñán
{"title":"Control by Learning in a Temperature System Using a Maximum Sensibility Neural Network","authors":"D. Cabrera-Gaona, L. Torres-Treviño, A. Rodríguez-Liñán","doi":"10.1109/MICAI.2013.19","DOIUrl":null,"url":null,"abstract":"A maximum sensibility neural network is implemented in an embedded system to make an online machine learning system, which is used to control the temperature of a small chamber. This is made by manually controlling the temperature to different set-points with a potentiometer, and using these values as an online training data for the neural network. Then the neural network is able to automatically adjust the temperature to any given set point with a good performance.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A maximum sensibility neural network is implemented in an embedded system to make an online machine learning system, which is used to control the temperature of a small chamber. This is made by manually controlling the temperature to different set-points with a potentiometer, and using these values as an online training data for the neural network. Then the neural network is able to automatically adjust the temperature to any given set point with a good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大灵敏度神经网络的温度系统学习控制
在嵌入式系统中实现了最大灵敏度神经网络,实现了一个在线机器学习系统,并将其用于小室的温度控制。这是通过使用电位器手动控制温度到不同的设定点,并使用这些值作为神经网络的在线训练数据来实现的。然后,神经网络能够自动调节温度到任意给定的设定值,并具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordination Model for Multi-robot Systems Based on Cooperative Behaviors JasMo - A Modularization Framework for Jason Examining Everyday Speech and Motor Symptoms of Parkinson's Disease for Diagnosis and Progression Tracking Quantifiers Types Resolution in NL Software Requirements An Uncertainty Quantification Method Based on Generalized Interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1