{"title":"Networks for separation of nonstationary signal sources","authors":"K. Matsuoka, M. Kawamoto","doi":"10.1109/IMTC.1994.352154","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network that recovers the original random signals from their linear mixtures observed by the same number of sensors. The network acquires the function by a learning process without using any particular information about the statistical properties of the sources and the coefficients of the linear transformation, except the assumption that the source signals are statistically independent and nonstationary. The adaptation rule is derived from a steepest descent minimization of a time-dependent cost function that takes the minimum only when the network outputs are uncorrelated with each other.<<ETX>>","PeriodicalId":231484,"journal":{"name":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","volume":"66 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1994.352154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a neural network that recovers the original random signals from their linear mixtures observed by the same number of sensors. The network acquires the function by a learning process without using any particular information about the statistical properties of the sources and the coefficients of the linear transformation, except the assumption that the source signals are statistically independent and nonstationary. The adaptation rule is derived from a steepest descent minimization of a time-dependent cost function that takes the minimum only when the network outputs are uncorrelated with each other.<>