{"title":"A Model of Storage I/O Performance Interference in Virtualized Systems","authors":"G. Casale, Stephan Kraft, Diwakar Krishnamurthy","doi":"10.1109/ICDCSW.2011.46","DOIUrl":null,"url":null,"abstract":"In this paper, we propose simple performance models to predict the impact of consolidation on the storage I/O performance of virtualized applications. We use a measurement-based approach based on tools such as blktrace and tshark for storage workload characterization in a commercial virtualized solution, namely VMware ESX server. Our approach allows a distinct characterization of read/write performance attributes on a per request level and provides valuable information for parameterization of storage I/O performance models. In particular, based on measures of quantities such as the mean queue-length seen upon arrival by requests, we define simple linear prediction models for the throughput, response times, and mix of read/write requests in consolidation based only on information collected in isolation experiments for the individual virtual machines.","PeriodicalId":133514,"journal":{"name":"2011 31st International Conference on Distributed Computing Systems Workshops","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 31st International Conference on Distributed Computing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
In this paper, we propose simple performance models to predict the impact of consolidation on the storage I/O performance of virtualized applications. We use a measurement-based approach based on tools such as blktrace and tshark for storage workload characterization in a commercial virtualized solution, namely VMware ESX server. Our approach allows a distinct characterization of read/write performance attributes on a per request level and provides valuable information for parameterization of storage I/O performance models. In particular, based on measures of quantities such as the mean queue-length seen upon arrival by requests, we define simple linear prediction models for the throughput, response times, and mix of read/write requests in consolidation based only on information collected in isolation experiments for the individual virtual machines.