Multi-attribute processing techniques for the enhancement and interpretation of seismic data

B. Milkereit, C. Spencer
{"title":"Multi-attribute processing techniques for the enhancement and interpretation of seismic data","authors":"B. Milkereit, C. Spencer","doi":"10.1109/MDSP.1989.97009","DOIUrl":null,"url":null,"abstract":"Summary form only given. Seismic data are collected, displayed, and interpreted in the time-distance domain (t-x). Local attributes of seismic data can be grouped into conventional single trace attributes (x=constant). The extraction of multitrace attributes is based on a computer-efficient implementation of localized slant stacking (beamforming) and median filtering. Image processing techniques are then applied to support the interpretation of migrated reflection seismic data whereby a seismic section is treated as a two-dimensional image. Local multitrace attributes have been used in a fast and robust coherency enhancement process for noisy seismic data. In a related application, multitrace attributes have provided the required independent data for successful multispectral image enhancement of seismic data. Multiattribute displays are well suited for the structural interpretation of migrated seismic data: this technique can be used for imaging of steeply dipping structures, analyzing uniformities and possible lithological boundaries, and highlighting focusing of diffracted energy and basin bounding faults.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. Seismic data are collected, displayed, and interpreted in the time-distance domain (t-x). Local attributes of seismic data can be grouped into conventional single trace attributes (x=constant). The extraction of multitrace attributes is based on a computer-efficient implementation of localized slant stacking (beamforming) and median filtering. Image processing techniques are then applied to support the interpretation of migrated reflection seismic data whereby a seismic section is treated as a two-dimensional image. Local multitrace attributes have been used in a fast and robust coherency enhancement process for noisy seismic data. In a related application, multitrace attributes have provided the required independent data for successful multispectral image enhancement of seismic data. Multiattribute displays are well suited for the structural interpretation of migrated seismic data: this technique can be used for imaging of steeply dipping structures, analyzing uniformities and possible lithological boundaries, and highlighting focusing of diffracted energy and basin bounding faults.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震资料增强与解释的多属性处理技术
只提供摘要形式。地震数据在时距域(t-x)中收集、显示和解释。地震数据的局部属性可以归为常规的单道属性(x=常数)。多迹属性的提取是基于局部倾斜叠加(波束形成)和中值滤波的计算机高效实现。然后应用图像处理技术来支持对偏移反射地震数据的解释,其中地震剖面被视为二维图像。局部多道属性被用于对有噪声地震数据进行快速、鲁棒的相干增强处理。在相关应用中,多道属性为地震数据的多光谱图像增强提供了所需的独立数据。多属性显示非常适合于迁移地震数据的构造解释:该技术可用于陡倾构造成像,分析均匀性和可能的岩性边界,突出衍射能量和盆地边界断裂的聚焦
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A filtering approach to the two-dimensional volume conductor forward and inverse problems A cross-correlation approach to astronomical speckle imaging A new robust method for 2-D sinusoidal frequency estimation Fast progressive reconstruction of a transformed image by the Hartley method Adaptive filter for processing of multichannel nonstationary seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1