An Integrated Framework for Disaster Event Analysis in Big Data Environments

P. Tin, Thi Thi Zin, T. Toriu, H. Hama
{"title":"An Integrated Framework for Disaster Event Analysis in Big Data Environments","authors":"P. Tin, Thi Thi Zin, T. Toriu, H. Hama","doi":"10.1109/IIH-MSP.2013.72","DOIUrl":null,"url":null,"abstract":"Today world has witnessed the catastrophic consequences of natural and man-made disasters are demanding the urgent need for more research to advance fundamental knowledge and innovation for disaster prevention, mitigation and management. At the same time, the world is in the age of the Big Data revolution which holds the potential to mitigate the effects of disaster events by enabling access to critical real time information. Thus, in this paper an integrated framework for analyzing disaster events by using the Big Data analytics is proposed. The proposed framework shall address three key components to perform data organization, data integration and analysis, information presentation to users by utilizing Big Data with respect to disaster events. In doing so, the paper shall create a disaster domain-specific search engine using co-occurring theory and Markov chain concepts for preparing impacts of disaster attacks to make the society better aware of the situations. Specifically, stochastic clustering with constraints is used to automatically extract disaster events by defining the set of structural attributes. Some illustrative simulations are shown by using Big Data sources for the Great East Japan earthquake, tsunami and nuclear disaster events of 2011.","PeriodicalId":105427,"journal":{"name":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2013.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Today world has witnessed the catastrophic consequences of natural and man-made disasters are demanding the urgent need for more research to advance fundamental knowledge and innovation for disaster prevention, mitigation and management. At the same time, the world is in the age of the Big Data revolution which holds the potential to mitigate the effects of disaster events by enabling access to critical real time information. Thus, in this paper an integrated framework for analyzing disaster events by using the Big Data analytics is proposed. The proposed framework shall address three key components to perform data organization, data integration and analysis, information presentation to users by utilizing Big Data with respect to disaster events. In doing so, the paper shall create a disaster domain-specific search engine using co-occurring theory and Markov chain concepts for preparing impacts of disaster attacks to make the society better aware of the situations. Specifically, stochastic clustering with constraints is used to automatically extract disaster events by defining the set of structural attributes. Some illustrative simulations are shown by using Big Data sources for the Great East Japan earthquake, tsunami and nuclear disaster events of 2011.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据环境下灾害事件分析集成框架
今天,世界目睹了自然灾害和人为灾害的灾难性后果,迫切需要进行更多的研究,以促进预防、减轻和管理灾害的基础知识和创新。与此同时,世界正处于大数据革命时代,通过获取关键的实时信息,大数据革命有可能减轻灾害事件的影响。因此,本文提出了一个利用大数据分析灾害事件的集成框架。提出的框架应解决三个关键组成部分,即利用大数据对灾害事件进行数据组织、数据集成和分析、向用户展示信息。为此,本文将利用共发生理论和马尔可夫链概念创建一个针对灾害领域的搜索引擎,以准备灾害袭击的影响,使社会更好地了解情况。具体而言,通过定义结构属性集,采用带约束的随机聚类方法自动提取灾害事件。利用大数据源对2011年东日本大地震、海啸和核灾难事件进行了一些说明性模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of Theme Park Queuing System by Using Arena A Method for Affine Invariant Image Smoothing Encryption in High Dynamic Range Images for RGBE Format Hybrid Reverberator Using Multiple Impulse Responses for Audio Rendering Improvement Recaptured Image Detection Based on Texture Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1